首页> 外文学位 >The Role of Cystic Fibrosis Transmembrane Conductance Regulator in Insulin Secretion in Pancreatic Islet beta-cells.
【24h】

The Role of Cystic Fibrosis Transmembrane Conductance Regulator in Insulin Secretion in Pancreatic Islet beta-cells.

机译:囊性纤维化跨膜电导调节剂在胰岛β细胞胰岛素分泌中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Cystic fibrosis (CF) is a recessive autosomal genetic disease resulted from mutations of cystic fibrosis transmembrane conductance regulator (CFTR). CF affects critically the lung, liver, pancreas, intestine and reproductive tract. CF patients also exhibit a high percentage of diabetes, which almost reach 50% in adult. The pathological cause of diabetes in CF patients, also called CF related diabetes (CFRD), is still controversial. It has been reported that CFTR expressed in the islet β cells, which is responsible for insulin secretion. However, the exact role of CFTR in islet β-cell and its relation to diabetes have been ignored. The present study aims to elucidate the role of CFTR in the process of insulin secretion by pancreatic islet β cells.;In the second part of our study, mathematical model is built up to clarify the role of CFTR in the electrical activity during insulin secretion. It is shown that reduction of CFTR conductance hyperpolarizes the membrane of the β-cell, for which it requires a larger electrical stimulus to evoke an action potential, indicating the contribution of CFTR to the membrane potential as demonstrated by our experimental results. Increase in intracellular Cl- concentration and the conductance of CFTR result in higher frequency of membrane potential oscillations, demonstrating that Cl- is crucial for the membrane potential oscillations. The electrical spikes induced by increase of ATP/ADP in the model are abolished by decreasing CFTR conductance, which is consistent with our findings that CFTR is involved in the generation of action potentials induced by glucose. In other word, our model demonstrates that CFTR is crucial for insulin secretion by its contribution to membrane potential and participating in the generation of electrical spikes via conducting Cl- efflux, which confirms our findings in the experimental study.;Taken together, the present study reveals a previously unrecognized important role of CFTR in glucose-stimulated insulin secretion via contributing to the membrane potential and the participating in the generation of action potential in islet β cells. This finding sheds new light into the understanding of the pathogenesis of CFRD and may provide grounds for the development of new therapeutic approaches for CFRD.;Glucose-stimulated insulin secretion is associated with a complex electrical activity in the pancreatic islet β-cell, which is characterized by a slow membrane depolarization superimposed with bursts of action potentials. Closing ATP-sensitive K+ channels (KATP) in response to glucose increase is generally considered the initial event that depolarizes the β-cell membrane and activates the voltage-dependent Ca2+ channels, which constitutes the major depolarizing component of the bursting action potentials giving rise to the cytosolic calcium oscillations that trigger insulin release. While Cl- has been implicated in an unknown depolarization current of the β-cell, the responsible Cl- channel remains unidentified. In the first part of our study, we show functional expression of CFTR and its activation by glucose in the β-cell. Activation of CFTR by glucose was also demonstrated in CHO cell over-expression system. The glucose-elicited whole-cell currents, membrane depolarization, electrical bursts (both magnitude and frequency), Ca2+ oscillations and insulin secretion could be abolished or reduced by inhibitors/knockdown of CFTR in primary mouse β-cells or RIN-5F β-cell line, or significantly attenuated in isolated mouse islet β-cells from CFTR mutant mice compared to that of wildtype. Significantly increased blood glucose level accompanied with reduced level of insulin is found in CFTR mutant mice compared to the wildtype. The results strongly indicate a role of CFTR in the process of insulin secretion.
机译:囊性纤维化(CF)是一种隐性常染色体遗传性疾病,是由囊性纤维化跨膜电导调节剂(CFTR)突变引起的。 CF严重影响肺,肝,胰腺,肠和生殖道。 CF患者还表现出高比例的糖尿病,成人几乎达到50%。 CF患者糖尿病的病理原因,也称为CF相关性糖尿病(CFRD),仍存在争议。据报道,CFTR在胰岛β细胞中表达,这是胰岛素分泌的原因。但是,CFTR在胰岛β细胞中的确切作用及其与糖尿病的关系已被忽略。本研究旨在阐明CFTR在胰岛β细胞分泌胰岛素的过程中的作用。在本研究的第二部分,建立数学模型以阐明CFTR在胰岛素分泌过程中电活动中的作用。结果表明,CFTR电导的降低会使β细胞膜超极化,为此它需要更大的电刺激来激发动作电位,这表明CFTR对膜电位的贡献如我们的实验结果所示。细胞内Cl-浓度的增加和CFTR的电导导致更高的膜电位振荡频率,表明Cl-对于膜电位振荡至关重要。通过降低CFTR电导消除了模型中ATP / ADP升高引起的电尖峰,这与我们的发现CFTR参与葡萄糖诱导的动作电位的产生相一致。换句话说,我们的模型证明CFTR通过其对膜电位的贡献和通过进行Cl-外排参与电尖峰的产生对于胰岛素分泌至关重要,这证实了我们在实验研究中的发现。通过在胰岛β细胞中促进膜电位和参与动作电位的产生,揭示了CFTR在葡萄糖刺激的胰岛素分泌中以前未被认识的重要作用。这一发现为了解CFRD的发病机理提供了新的思路,并可能为CFRD的新治疗方法的开发提供依据。葡萄糖刺激的胰岛素分泌与胰岛β细胞中复杂的电活动有关。其特征在于缓慢的膜去极化与动作电位的爆发叠加。通常认为响应葡萄糖增加而关闭ATP敏感的K +通道(KATP)的初始事件是使β细胞膜去极化并激活电压依赖性Ca2 +通道的初始事件,这构成了爆发动作电位的主要去极化成分,从而导致触发胰岛素释放的胞质钙振荡。尽管Cl-参与了未知的β细胞去极化电流,但负责任的Cl通道仍未确定。在我们的研究的第一部分中,我们显示了CFTR的功能性表达及其在β细胞中的葡萄糖激活作用。在CHO细胞过表达系统中也证实了葡萄糖激活CFTR。葡萄糖诱导的全细胞电流,膜去极化,电爆发(幅度和频率),Ca2 +振荡和胰岛素分泌可通过抑制/敲除CFTR在原代小鼠β细胞或RIN-5Fβ细胞中的作用而消除或减少。与野生型相比,在CFTR突变小鼠的分离的小鼠胰岛β细胞中具有明显的抗性或显着减毒作用。与野生型相比,在CFTR突变小鼠中发现血糖水平显着升高,同时胰岛素水平降低。结果强烈表明CFTR在胰岛素分泌过程中的作用。

著录项

  • 作者

    Guo, Jinghui.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Biology Animal Physiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号