首页> 外文学位 >Multi-objective optimization for resource driven scheduling in construction projects.
【24h】

Multi-objective optimization for resource driven scheduling in construction projects.

机译:建设项目中资源驱动的调度的多目标优化。

获取原文
获取原文并翻译 | 示例

摘要

The main research developments of this study contribute to the advancement of current practice in resource scheduling and planning in construction projects and can lead to: (1) an increase in the resource utilization efficiency in construction projects which can produce significant improvements in construction productivity, cost and duration; (2) an improvement in utilizing the limited availability of resources; (3) a reduction in the duration and cost of multiple shifts operation while circumventing the negative impacts of shift work on productivity, safety, and cost; and (4) an enhancement in analyzing construction project risks in order to improve the reliability of project performance.;First, innovative resource leveling metrics are developed to circumvent the limitation of existing metrics and directly measure and minimize undesirable resource fluctuation. A robust resource leveling model is formulated by incorporating the newly developed resource leveling metrics to maximize resource utilization efficiency for construction projects. The optimization model is implemented using genetic algorithms in order to optimize resource utilization efficiency.;Second, a resource leveling and allocation model is developed to simultaneously optimize resource leveling and allocation for construction projects. The model is developed as a multi-objective genetic algorithm to provide optimal tradeoffs between maximizing resource utilization efficiency and minimizing project duration while complying with all resource availability constraints.;Third, a robust multiple shifts scheduling model is formulated to simultaneously minimize project time and cost while minimizing the negative impacts of shift work on construction productivity, safety, and cost. A multi-objective genetic algorithm is utilized to implement the model in order to support construction planners in generating optimal tradeoffs among project time, cost, and labor utilization in evening and night shifts. The model is also designed to consider labor availability constraints in order to optimally distribute the limited availability of labor on the competing shifts.;Fourth, a robust resource fluctuation cost model is developed to provide the most cost effective and efficient resource utilization for construction projects. The model is developed as a novel multi-objective optimization model that is capable of modeling and minimizing overall resource fluctuation costs (i.e. idle costs, release and rehiring costs, and mobilization costs) and analyzing and optimizing the potential tradeoffs between minimizing resource fluctuation costs and minimizing project duration.;Fifth, a robust project risk assessment model is developed to overcome the limitations of existing probabilistic scheduling methods including (a) the inaccuracy limitation of the PERT method due to its "merge event bias" by incorporating an accurate multivariate normal integral method; and (b) the impractical computational time of the Monte Carlo simulation method by incorporating a newly developed approximation method. The model is named FARE (Fast and Accurate Risk Evaluation). The development of the FARE model facilitates the optimization of resource-driven scheduling while considering the impact of relevant risks and uncertainties.;Sixth, a prototype multi-objective optimization for resource driven scheduling system is developed to seamlessly integrate the aforementioned research developments with commercially available project management software, Microsoft Project 2007, to facilitate their ultimate use and adoption by the construction industry. The system is designed to (1) retrieve project scheduling data from MS Project that can be utilized it in the developed optimization models, and store the generated optimization results in a binary file that can be accessed and processed by MS Project; (2) enable construction planners to benefit from and utilize the practical project scheduling and control features in MS Project during their analysis of the optimal schedules generated by the developed models in this study; and (3) facilitate the input of project parameters and the visualization of the obtained solutions using the newly developed graphical user interface modules. (Abstract shortened by UMI.)
机译:本研究的主要研究进展有助于促进当前建设项目资源调度和计划的实践,并可以导致:(1)建设项目资源利用效率的提高,可以显着提高建筑生产率,成本和持续时间; (2)利用有限的资源得到改善; (3)减少多次轮班作业的时间和成本,同时避免轮班工作对生产率,安全性和成本的负面影响; (4)加强对建设项目风险的分析,以提高项目绩效的可靠性。首先,开发创新的资源均衡指标,以规避现有指标的局限性,并直接测量和最小化不良的资源波动。通过合并最新开发的资源均衡指标来制定强大的资源均衡模型,以最大程度地提高建设项目的资源利用效率。通过遗传算法实现优化模型,以优化资源利用效率。其次,建立资源均衡分配模型,以同时优化建设项目的资源均衡分配。该模型被开发为一种多目标遗传算法,可在最大化资源利用效率和最小化项目工期的同时,在满足所有资源可用性约束的情况下提供最佳的权衡。第三,建立了鲁棒的多班次调度模型,以同时最小化项目时间和成本同时最大程度地减少轮班工作对建筑生产率,安全性和成本的负面影响。利用多目标遗传算法来实现该模型,以支持施工计划人员在夜间和夜间班次中在项目时间,成本和人工利用之间产生最佳权衡。该模型还设计为考虑劳动力可用性约束,以便在竞争性轮班中最佳地分配有限的劳动力可用性。第四,开发了鲁棒的资源波动成本模型,以为建设项目提供最具成本效益和最有效的资源利用率。该模型被开发为一种新颖的多目标优化模型,该模型能够建模和最小化总体资源波动成本(即,闲置成本,发布和重新雇用成本以及动员成本),并分析和优化最小化资源波动成本与成本之间的潜在权衡。第五,开发了一个健壮的项目风险评估模型,以克服现有概率调度方法的局限性,其中包括:(a)由于合并了PERT方法的“合并事件偏差”而导致的不准确限制,方法是通过合并准确的多元正态积分方法; (b)通过合并新开发的近似方法,蒙特卡洛模拟方法的计算时间不切实际。该模型称为FARE(快速准确的风险评估)。 FARE模型的开发在考虑相关风险和不确定性影响的同时,促进了资源驱动调度的优化。第六,开发了资源驱动调度系统的多目标优化原型,将上述研究进展与可商用化无缝集成。项目管理软件Microsoft Project 2007,以方便其最终被建筑业使用和采用。该系统旨在(1)从MS Project中检索可用于已开发的优化模型中的项目计划数据,并将生成的优化结果存储在可由MS Project访问和处理的二进制文件中; (2)使建筑规划人员在分析由本研究中开发的模型生成的最佳进度计划时,能够从MS Project的实际项目进度计划和控制功能中受益并加以利用; (3)使用新开发的图形用户界面模块促进项目参数的输入和获得解决方案的可视化。 (摘要由UMI缩短。)

著录项

  • 作者

    Jun, Dho Heon.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 245 p.
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号