首页> 外文学位 >Three-dimensional marker-based multiphase flow computation using adaptive Cartesian grid techniques.
【24h】

Three-dimensional marker-based multiphase flow computation using adaptive Cartesian grid techniques.

机译:使用自适应笛卡尔网格技术基于三维标记的多相流计算。

获取原文
获取原文并翻译 | 示例

摘要

Multiphase flows associated with interfacial dynamics, steep jump in fluid properties and moving boundaries between different phases pose substantial computational challenges in terms of both modeling as well as computational cost. The present work uses an immersed boundary technique to model the interfacial dynamics, Lagrangian markers to track the moving phase boundaries, and a stationary Cartesian grid to solve all the flow governing equations. Time dependent triangulated surface meshes are employed to represent the time dependent interfaces shape and location. Based on the solution characteristics, multi-level, three-dimensional adaptive grid techniques are incorporated into the computational framework to help meet the resolution requirements. Furthermore, a conservative marker redistribution technique is developed to maintain a desired marker-spacing, and a connectivity preserving level contour-based reconstruction technique is devised to handle topological changes associated with the interfacial dynamics. The flow equations were solved using the projection method with a finite volume staggered grid formulation on adaptive grids. For phase change problems, accuracy of the mass transfer computation critically affects the overall computational outcome. Efforts have been made to address this via a sharp interface-based mass transfer mode combined with the immersed boundary method. The capabilities and accuracy of the individual components and overall computational system are tested with a range of computations including demonstration of improvements with conservative interface restructuring, reconstruction and its effect on immersed boundary solution accuracy, estimation of computational cost saving with adaptive grids, rising bubble coalescence, binary drop collision, and stationary bubble growth in a superheated liquid pool. The method has demonstrated its capability for handling high density ratio, O(1000), multiphase fluid dynamics.
机译:与界面动力学,流体性质的急剧跳跃以及不同相之间的运动边界相关的多相流在建模和计算成本方面都构成了巨大的计算挑战。本工作使用沉浸边界技术对界面动力学进行建模,使用拉格朗日标记来跟踪移动相边界,并使用固定的笛卡尔网格来求解所有流动控制方程。时间相关的三角表面网格用于表示时间相关的界面形状和位置。根据解决方案的特点,将多层,三维自适应网格技术合并到计算框架中,以帮助满足分辨率要求。此外,开发了一种保守的标记重新分配技术以维持所需的标记间距,并且设计了一种基于连通性保持水平轮廓的重建技术来处理与界面动力学相关的拓扑变化。使用投影方法在自适应网格上使用有限体积交错网格公式求解流动方程。对于相变问题,传质计算的准确性会严重影响整体计算结果。已经努力通过结合浸渍边界方法的基于界面的清晰传质模式来解决这个问题。通过一系列计算来测试各个组件和整个计算系统的功能和准确性,包括通过保守的接口重组演示改进,重建及其对沉浸边界解决方案精度的影响,使用自适应网格估算节省的计算成本,上升的气泡合并等,二元液滴碰撞和过热液池中的固定气泡生长。该方法证明了其处理高密度比O(1000)多相流体动力学的能力。

著录项

  • 作者

    Singh, Rajkeshar.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号