首页> 外文学位 >Low temperature solvothermal routes for synthesis of crystalline group 13 and transition metal nitrides via energetic precursor decomposition.
【24h】

Low temperature solvothermal routes for synthesis of crystalline group 13 and transition metal nitrides via energetic precursor decomposition.

机译:低温溶剂热途径,用于通过高能前体分解合成13号晶体和过渡金属氮化物。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes the successful utilization of solvothermal methods, mainly in toluene, for the syntheses and characterization of some metastable binary crystalline group 13 and crystalline first row transition metal nitride micro- and nanoparticles synthesized by the decomposition of metal azide. The energetic metal azide intermediate formation and decomposition processes resulting from the reaction between an efficient nitrogen source, sodium azide, with related metal halides produces metal nitrides at low temperature (below 300°C).; The nitride products were studied using various analytical methods; for instance, diffraction, microscopic and various spectroscopic, and other chemical and thermal analytical methods.; Semiconducting luminescence materials were synthesized; for example, nanocrystalline wurtzite InN (Eg = 1.7 eV) from 280°C reaction and wurtzite GaN was crystallized by a post-reaction annealing process. Both of these nitrides were synthesized as an aggregation of the nanoparticles. Lower temperature in toluene and hexadecane systems favorably produced cubic phase mixed InN products, having solvent influenced morphologies. The synthesized ternary metal nitrides, Ga-In-N, showed some evidence of binary metal nitride composites and solid-solution products.; Well-crystallized non-magnetic cubic anti-ReO3 unit cell structured Cu3N was synthesized at very low temperature, having cubic shape of particle aggregation, while the ferromagnetic hexagonal Ni3N was synthesized with smaller (∼20 nm) nanoparticle aggregations. The formation mechanism of nitrides from precursors via azide intermediates was successfully probed through the XRD study of the Cu3N formation. Magnetic Cu 3N was synthesized using NiBr2/CUCl2 mixture, a possible nitrogen centered Cu2NiN2. Strongly ferromagnetic nanocrystalline, &egr;-Fe2N, was also synthesized, as well as various well crystallized phases of magnetic manganese nitrides. These latter nitrides include paramagnetic theta-MnN and a weakly ferromagnetic mixture of eta-Mn 3N2 with &egr;-Mn4N that were synthesized through a well-stirred and precursor pellet reaction, respectively. All of the produced manganese nitride materials showed wire or rod natures of morphologies.; All of the produced crystalline materials from the solvothermal reaction in solvents have relative thermal metastability with organic surface capping agents resulting from reaction with solvents. These organic coatings might improve stability of isolated intermediates and the metastable products in air relative to unstabilized metal nitride particles.
机译:本文介绍了溶剂热法(主要在甲苯中)的成功利用,该方法用于合成和表征一些亚稳态的二元晶体群13和由金属叠氮化物分解而合成的晶体第一行过渡金属氮化物微粒和纳米粒子。有效氮源叠氮化钠与相关金属卤化物之间的反应导致高能金属叠氮化物的中间形成和分解过程,在低温(低于300°C)下产生金属氮化物。使用各种分析方法研究了氮化物产物。例如,衍射,显微和各种光谱学以及其他化学和热分析方法。合成了半导体发光材料。例如,通过后反应退火工艺使来自280°C反应的纳米晶纤锌矿InN(Eg = 1.7 eV)和纤锌矿GaN结晶。这些氮化物都被合成为纳米颗粒的聚集体。甲苯和十六烷体系中的较低温度有利地产生了立方相混合的InN产品,具有受溶剂影响的形态。合成的三元金属氮化物Ga-In-N显示出一些二元金属氮化物复合物和固溶体产物的证据。在非常低的温度下合成了结晶良好的非磁性立方抗ReO3晶胞结构的Cu3N,具有立方聚集的颗粒形状,而合成的铁磁六角形Ni3N具有较小的(〜20 nm)纳米颗粒聚集体。通过XRD研究Cu3N的形成,成功地探索了通过叠氮化物中间体从前体形成氮化物的机理。使用NiBr2 / CUCl2混合物(可能是以氮为中心的Cu2NiN2)合成了磁性Cu 3N。还合成了强铁磁性的纳米晶体,例如-Fe 2 N,以及磁性氮化锰的各种良好结晶的相。后面的这些氮化物包括顺磁θ-MnN和η-Mn3N2与-Mn4N的弱铁磁混合物,它们分别通过充分搅拌和前体粒料反应合成。所生产的所有氮化锰材料均表现出线或棒的形态特征。在溶剂中通过溶剂热反应生产的所有晶体材料均具有与与溶剂反应产生的有机表面覆盖剂的相对热亚稳性。相对于不稳定的金属氮化物颗粒,这些有机涂层可以改善空气中分离的中间体和亚稳产物的稳定性。

著录项

  • 作者

    Choi, Jonglak.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号