首页> 外文学位 >Probes of pulsar emission physics: The double pulsar and the gamma-ray pulsar population.
【24h】

Probes of pulsar emission physics: The double pulsar and the gamma-ray pulsar population.

机译:脉冲星发射物理学的探究:双脉冲星和伽马射线脉冲星人口。

获取原文
获取原文并翻译 | 示例

摘要

The double pulsar, PSR J0737-3039A/B, is a unique binary system in which both neutron stars have been detected as radio pulsars. We analyze the evolution of the radio emission from the second born, 2.8 s pulsar (pulsar B) based on five years of Green Bank Telescope data since 2003 December. We find that the pulse profile and the flux density of pulsar B change significantly over time, culminating in its radio emission disappearance towards our line of sight since 2008 March. Over this time, the flux density decreases dramatically and the pulse profile evolves from a single to a double peak. This profile shape evolution is likely caused by relativistic spin precession. We explain the profile evolution by an elliptical beam shape geometry model based on geodetic spin precession. By fitting for the observed pulse profile widths, the model constrains the geometry angles of pulsar B, namely the magnetic misalignment from the spin axis alphaB = 61 deg and the spin misalignment from the orbit normal thetaB = 138.5 deg, which are consistent with and similar to those derived by Breton et al. (2008) with a completely different geometry framework. The elliptical beam model predicts that the radio emission reappearance from pulsar B towards our line of sight is expected to happen between 2014 and 2035, with the variation depending on assumptions of the symmetry of the beam.;The strong stellar wind produced by the high spin-down luminosity of the first born, recycled, 23 ms pulsar (pulsar A) of the double pulsar system distorts the magnetosphere of its companion pulsar B. The wind-magnetosphere interaction model determines a bow-shock around pulsar B and it is likely the boundary of its magnetosphere. With geodetic spin precession, pulsar B provides an excellent opportunity to study different emission regions in the magnetosphere. Using the distorted magnetosphere and the well-defined geometrical parameters of pulsar B, we estimate the emission altitude to be ~20 neutron star radii in the bright orbital longitude regions. We further find that the emission altitude varies across the orbit due to the change in the orientation of the bow-shock with respect to our line of sight. Moreover, the emission altitude of pulsar B changes over time due to spin precession.;We then study the pulse profile variation of pulsar A. Analyzing more than six years of data, we confirm that pulsar A does not show a significant pulse width variation over time, which is consistent with previous works. Following a similar geometry framework as for pulsar B, we determine the geometry of pulsar A based on geodetic spin precession, including subtle changes of the pulse width at lower intensity levels from pulse peaks. By knowing the complete geometry of both pulsars, we construct the full geometrical configuration of the system. We find that the relative angle between the spin axes of the two pulsars varies periodically over time. This is the first time that this relative spin angle has been estimated for a double neutron star system.;Finally, we use Fermi Gamma-ray Space Telescope results on non-recycled pulsars to study the gamma-ray pulsar population. We use pulsar detections obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L depends on the period P and the period derivative P. Using LAT-measured diffuse fluxes, we place a 2sigma upper limit on the average braking index and a 2sigma lower limit on the average surface magnetic field strength of the gamma-ray pulsar population of 3.8 and 3.2e10 G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the two-year sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected five-year sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. We note that these predictions are significantly dependent on our model assumptions. (Abstract shortened by UMI.).
机译:双脉冲星PSR J0737-3039A / B是一个独特的双星系统,其中两个中子星都被检测为无线电脉冲星。我们根据2003年12月以来五年的Green Bank望远镜数据分析了第二代2.8 s脉冲星(脉冲星B)的无线电发射的演变。我们发现脉冲星B的脉冲轮廓和通量密度会随着时间的推移而发生显着变化,最终导致其无线电发射自2008年3月以来向我们视线消失。在这段时间内,通量密度急剧下降,脉冲轮廓从单峰演变为双峰。这种轮廓形状的演变很可能是由相对论自旋进动引起的。我们通过基于大地旋转自旋进动的椭圆形梁几何模型来解释轮廓演化。通过拟合观察到的脉冲轮廓宽度,该模型可以限制脉冲星B的几何角度,即与自旋轴的磁失准αB= 61度和与轨道法线theBB的磁失准= 138.5度,这与相同且相似布雷顿等人。 (2008)使用完全不同的几何框架。椭圆波束模型预测,从脉冲星B向我们视线的无线电发射重新出现预计将在2014年至2035年之间发生,其变化取决于波束对称性的假设;高自旋产生的强恒星风双脉冲星系的第一个重生,循环利用的23 ms脉冲星(脉冲星A)的向下发光度扭曲了其伴随脉冲星B的磁层。风-磁层相互作用模型确定了脉冲星B周围的弓形冲击,很可能是它的磁层边界。借助大地自旋进动,脉冲星B提供了研究磁层中不同发射区域的绝好机会。利用扭曲的磁层和明确定义的脉冲星B的几何参数,我们估计在明亮的轨道经度区域内的发射高度约为20个中子星半径。我们还发现,由于弓形电击相对于我们视线的方向变化,发射高度在整个轨道上都发生了变化。此外,脉冲星B的发射高度由于自旋进动而随时间变化。时间,这与以前的作品是一致的。遵循与脉冲星B相似的几何框架,我们基于大地测量自旋进动来确定脉冲星A的几何形状,包括在较低强度水平下从脉冲峰值细微改变脉冲宽度。通过了解两个脉冲星的完整几何形状,我们构造了系统的完整几何结构。我们发现两个脉冲星的自旋轴之间的相对角度随时间周期性变化。这是首次估计双中子星系统的相对旋转角。最后,我们在非循环脉冲星上使用费米伽马射线太空望远镜的结果研究了伽马射线脉冲星的种群。我们使用从大面积望远镜(LAT)获得的脉冲星探测来约束伽马射线亮度L如何取决于周期P和周期导数P。使用LAT测量的扩散通量,我们将2sigma的上限设置为平均制动γ脉冲星群的平均表面磁场强度的指数和2sigma下限分别为3.8和3.2e10G。然后,根据我们的人口模型,预测LAT可检测到的未回收脉冲星的数量。使用两年的灵敏度,我们发现LAT能够检测大约380个未回收脉冲星的发射,其中包括150个当前确定的无线电脉冲星。使用预期的五年灵敏度,可以检测到大约620个未回收脉冲星,包括大约220个当前识别的无线电脉冲星。我们注意到,这些预测很大程度上取决于我们的模型假设。 (摘要由UMI缩短。)。

著录项

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号