首页> 外文学位 >An integrated analysis of fibroblast morphology and migration on bioengineered substrata aided by machine vision and learning techniques.
【24h】

An integrated analysis of fibroblast morphology and migration on bioengineered substrata aided by machine vision and learning techniques.

机译:借助机器视觉和学习技术,对生物工程基质上的成纤维细胞形态和迁移进行了综合分析。

获取原文
获取原文并翻译 | 示例

摘要

In vivo, mechanical based signaling cues are nearly ubiquitous within organisms, organ systems, tissues and individual cells. Through the process known as mechanotransduction, various mechanical based stimuli, such as: stretch, shear and compression, are converted to biochemical responses which regulate biological phenomena within the model organs or systems. One specific type of mechanical stimuli involves a bidirectional feedback loop in which individual cells probe and respond to the material properties of extracellular matrix (ECM), specifically the elastic modulus of the substrata.;Both in vivo and in vitro, this signaling pathway is known to have a prominent role in regulating tissue morphogenesis and homeostasis, influencing cellular differentiation, regulating gene transcription and protein translation and determining cellular migration and morphology. The latter two phenomena, cellular migration and morphology, have been quantified in vivo using thin film substrata with tunable material properties composed of cross-linked polyacrylamide (pAAM). However, although both phenomena are the result of directed rearrangement of the cytoskeleton, rarely have the two been studied on the level of an individual cell and as an integrated process.;This thesis employs a multidisciplinary approach involving materials science, classical cellular biology and machine learning techniques to rigorously quantify the dependence of fibroblast morphology and migration on substratum stiffness.;First, thin film pAAM hydrogel substratum were generated with different crosslinker densities. Various aspects of the substratum were rigorously quantified including: elastic modulus, thickness and the density of surface ligand. The characterization of the substratum demonstrates the ability to accurately reproduce hydrogels over a range of elastic moduli (4.1 kPa to 136.2 kPa).;Introduction of BALB/c fibroblasts to these substrata allowed for the analysis both fibroblast morphological and migratory behaviors. Findings demonstrate that within a population, complexity in cellular architecture increases with the elastic modulus of the substratum and that cellular speed and persistence, as determined by the Random Cell Walk Model (RCWM), are biphasic with increased substratum stiffness. In addition, a stiffness-dependent increase in the diversity of both behaviors within the context of a population and an individual cell are reported. Finally, through the development of a morphological classification system, aided by the use of machine vision and learning techniques, experimental evidence is presented showing the interplay between cellular dynamic changes in morphology and the resulting migration pattern.
机译:在体内,基于机械的信号提示在生物体,器官系统,组织和单个细胞中几乎无处不在。通过称为机械转导的过程,各种基于机械的刺激(例如:拉伸,剪切和压缩)被转换为调节模型器官或系统内生物现象的生化响应。一种特定类型的机械刺激涉及双向反馈回路,其中单个细胞探测并响应细胞外基质(ECM)的材料特性,尤其是基质的弹性模量。在体内和体外,该信号传导途径都是已知的在调节组织形态发生和稳态,影响细胞分化,调节基因转录和蛋白质翻译以及确定细胞迁移和形态方面具有重要作用。后两种现象,即细胞迁移和形态学,已在体内使用具有可调材料特性的薄膜基质(由交联聚丙烯酰胺(pAAM)组成)进行了定量。然而,尽管这两种现象都是细胞骨架定向重排的结果,但很少在单个细胞的水平上以及作为一个整体过程来研究这两种现象。;本文采用了涉及材料科学,经典细胞生物学和机器的多学科方法严格量化成纤维细胞形态和迁移对基质硬度的依赖性的学习技术;首先,生成具有不同交联剂密度的薄膜pAAM水凝胶基质。严格定量了基质的各个方面,包括:弹性模量,厚度和表面配体的密度。该基质的表征显示了能够在一定的弹性模量(4.1 kPa至136.2 kPa)范围内精确复制水凝胶的能力。将BALB / c成纤维细胞引入这些基质可以分析成纤维细胞的形态和迁移行为。研究结果表明,在总体中,细胞结构的复杂性随基质的弹性模量而增加,并且由随机细胞游走模型(RCWM)确定的细胞速度和持久性是双相的,具有增加的基质硬度。此外,据报道,在种群和单个细胞的情况下,两种行为的多样性都依赖于刚度的增加。最后,通过使用机器视觉和学习技术的帮助,通过形态学分类系统的开发,实验证据显示了形态学中细胞动态变化与迁移模式之间的相互作用。

著录项

  • 作者

    Walker, Matthew L.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Biology Cell.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号