首页> 外文学位 >Quantification of vascular morphogenesis in the chick embryo and its relationship to the hemodynamic environment.
【24h】

Quantification of vascular morphogenesis in the chick embryo and its relationship to the hemodynamic environment.

机译:雏鸡胚胎中血管形态发生的定量及其与血液动力学环境的关系。

获取原文
获取原文并翻译 | 示例

摘要

Congenital heart disease (CHD) has the highest incidence and mortality rate of all birth defects in the U.S., occurring in at least 8 of every 1000 live births, and accounting for more than 24% of birth defect related infant deaths. Clinical and experimental data indicate that the hemodynamic environment has a significant role in the etiology of CHD, motivating the development of fetal valvuloplasty to reverse the progression of heart defects in utero. The efficacy of this intervention relies heavily on understanding the biomechanical relationships between blood flow and cardiovascular growth and remodeling. This thesis describes several studies using the chick embryo model designed to quantify vascular morphogenesis in vivo and link the observed trends to hemodynamic forces such as wall shear stress (WSS). Morphogenesis of the embryonic aortic arches, a series of bilaterally paired vessels surrounding the foregut and the precursors to the great vessels, was investigated using fluorescent dye injection and optical coherence tomography imaging. These experimental results were combined with computational fluid dynamics models of flow through the aortic arches, which revealed a correlation between transitioning aortic arch patterns and acute increases in WSS. Additionally, a regression analysis found a strong polynomial relationship between luminal aortic arch growth and deviations in WSS. Transformations of the aortic arches were further investigated using a computational optimization-based growth model. The model demonstrated that selection of the adult single aortic arch was influenced by the rotation of the outflow tract of the heart. The principle of minimum work, combined with this model, accurately predicted the transformation to a single aortic arch configuration. In order to support predictive computational models, quantitative data of vascular growth is required. Morphogenesis of an embryonic vitelline artery was tracked using a time-lapse, long-term optical coherence tomography based imaging system. Global and local growth of the artery was quantitatively analyzed at high spatial and temporal resolution. Finally, a model of hypoplastic left heart syndrome in the chick embryo was used to determine alterations in intracardiac flow patterns that may lead to the progression of this defect. Out of three venous injection sites, two shifted their flow pattern significantly. This change was observed soon after the intervention to generate the defect was performed, suggesting that flow disruption is an early insult leading to hypoplastic left heart syndrome. Together, these studies support the importance of the hemodynamic environment in determining vascular morphogenesis in the embryo. The combined experimental and computational approach provided new quantitative data of embryonic vascular morphogenesis. The results of these studies and the methods established in this thesis lay the foundation for future research on the biomechanics of cardiovascular development.
机译:在美国,所有先天性心脏病(CHD)的发生率和死亡率最高,每1000例活产中至少有8例发生,占与出生缺陷相关的婴儿死亡的24%以上。临床和实验数据表明,血流动力学环境在冠心病的病因中起着重要作用,促使胎儿瓣膜成形术发展以逆转子宫内心脏缺陷的进展。这种干预的有效性在很大程度上取决于对血流与心血管生长和重塑之间生物力学关系的理解。本文描述了一些使用雏鸡胚胎模型进行的研究,该模型旨在量化体内血管形态发生,并将观察到的趋势与诸如壁剪应力(WSS)的血液动力学力联系起来。胚胎主动脉弓的形态发生是使用荧光染料注入和光学相干断层扫描成像技术研究的,围绕前肠的一系列双侧配对血管和大血管的前体。这些实验结果与流经主动脉弓的计算流体动力学模型相结合,揭示了过渡主动脉弓模式与WSS急剧增加之间的相关性。此外,回归分析发现腔主动脉弓增长与WSS偏差之间存在很强的多项式关系。使用基于计算优化的增长模型进一步研究主动脉弓的转变。该模型表明,成人单主动脉弓的选择受心脏流出道旋转的影响。最小工作原理与该模型相结合,可以准确地预测到单个主动脉弓结构的转变。为了支持预测性计算模型,需要血管生长的定量数据。使用基于延时,长期光学相干断层扫描的成像系统跟踪胚胎卵黄质动脉的形态发生。在高空间和时间分辨率下定量分析了动脉的整体和局部生长。最后,使用雏鸡胚胎中的左心发育不全综合征模型来确定心脏内血流模式的改变,这可能导致这种缺陷的发展。在三个静脉注射部位中,有两个明显改变了其流动方式。在进行干预以产生缺陷后不久就观察到了这种变化,这表明血流中断是导致左心发育不全综合征的早期侮辱。总之,这些研究支持血液动力学环境在确定胚胎中血管形态发生中的重要性。实验与计算相结合的方法为胚胎血管形态发生提供了新的定量数据。这些研究结果和本文建立的方法为今后心血管发展的生物力学研究奠定了基础。

著录项

  • 作者

    Kowalski, William J.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号