首页> 外文学位 >A novel multiblock immersed boundary method enabling high order large eddy simulation of pathological and medical device hemodynamics.
【24h】

A novel multiblock immersed boundary method enabling high order large eddy simulation of pathological and medical device hemodynamics.

机译:一种新颖的多块沉浸边界方法,可对病理和医疗器械血液动力学进行高阶大涡模拟。

获取原文
获取原文并翻译 | 示例

摘要

Computational fluid dynamics (CFD) simulations are becoming a reliable tool in understanding disease progression, investigating blood flow patterns and evaluating medical device performance such as stent grafts and mechanical heart valves. Previous studies indicate the presence of highly disturbed, transitional and mildly turbulent flow in healthy and pathological arteries. Accurate simulation of the transitional flow requires high order numerics together with a scale resolving turbulence model such as large eddy simulation (LES). This in turn limits one to use a structured fluid flow solver on which complex, branching arterial domains that are typical in the human blood circulatory system could not be handled. To overcome this, a novel multiblock based immersed boundary method (IBM) is developed based on high order discretization schemes that can efficiently simulate blood flow in complex arterial geometries using structured Cartesian fluid flow solvers. The developed solver, WenoHemo, is systematically validated for each of the newly introduced numerics using a variety of numerical and experimental results available in the literature. Three dimensional laminar flow over a sphere, laminar flow in a backward facing step, laminar and transitional flow in an abdominal aortic aneurysm (AAA), transitional flow in a model stenosed artery, and turbulent flow in a mixing layer are used as benchmark cases for validating the solver thoroughly.;WenoHemo is then applied to study blood flow patterns in a pathological thoracic aortic aneurysm (TAA) and in a resulting thoracic aorta with a stent graft (TASG) geometry after an endovascular repair (EVAR). Phase averaged velocity profiles, turbulence kinetic energy levels, viscous wall shear stresses and turbulence energy spectra are used to compare the similarities and differences between the blood flow patterns obtained. Presence of well developed turbulence is detected in the case of TAA whereas TASG showed periodic vortex shedding with lower turbulence levels and improved blood flow to the descending aorta. Application of the solver to simulate blood flow patterns obtained in a bi-leaflet mechanical heart valve (BMHV) placed in a model aorta with imposed kinematics of the leaflets is also carried out, which reveals complex blood flow patterns that need to be considered in the design of the same for reliability and to reduce post surgical complications.
机译:计算流体动力学(CFD)模拟正在成为了解疾病进展,研究血流模式和评估医疗器械性能(如覆膜支架和机械心脏瓣膜)的可靠工具。先前的研究表明,健康和病理性动脉中存在高度紊乱,过渡性和轻度湍流。过渡流的精确模拟需要高阶数值以及诸如大涡模拟(LES)之类的尺度解析湍流模型。反过来,这限制了人们使用结构化的流体流动求解器,在该求解器上无法处理人体血液循环系统中典型的复杂的分支动脉域。为了克服这个问题,基于高阶离散化方案开发了一种新颖的基于多块的浸入边界方法(IBM),该方案可以使用结构化笛卡尔流体流动求解器有效地模拟复杂动脉几何形状中的血流。使用文献中提供的各种数值和实验结果,针对每个新引入的数值系统地验证了开发的求解器WenoHemo。球形的三维层流,朝后的步中的层流,腹主动脉瘤(AAA)中的层流和过渡流,狭窄的模型动脉中的过渡流以及混合层中的湍流被用作以下情况的基准案例彻底验证求解器。然后,WenoHemo用于研究病理性胸主动脉瘤(TAA)以及由此产生的胸主动脉的血管内血管修复(EVAR)后的血流模式。相平均速度分布图,湍流动能水平,粘性壁切应力和湍流能谱用于比较获得的血流模式之间的相似性和差异。在TAA的情况下,检测到湍流发展良好,而TASG表现出周期性的涡旋脱落,湍流水平较低,流向降主动脉的血流增加。还进行了求解器的应用,以模拟放置在模型主动脉中的双叶机械心脏瓣膜(BMHV)中获得的血流模式,并施加了小叶运动学,这揭示了复杂的血流模式需要在模型中进行考虑。设计相同的产品以提高可靠性并减少术后并发症。

著录项

  • 作者

    Anupindi, Kameswararao.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号