首页> 外文学位 >Simultaneous improvement in ionic conductivity and flexibility of solid polymer electrolytes for thin film lithium ion batteries.
【24h】

Simultaneous improvement in ionic conductivity and flexibility of solid polymer electrolytes for thin film lithium ion batteries.

机译:同时改善了薄膜锂离子电池用固体聚合物电解质的离子电导率和柔韧性。

获取原文
获取原文并翻译 | 示例

摘要

Solid polymer electrolytes (SPEs) provide advantages over liquid electrolytes in terms of safety, reliability, less temperature sensitive, and simplicity of design. With the use of a SPE in lithium batteries, high specific energy and specific power, safe operation, flexibility in packaging, and low cost of fabrication can be expected. However, after 30 years, SPEs have rarely found commercial success due to the low ionic conductivity and/or insufficient mechanical properties, both of which are related to the movement of the polymer chains. Many physical/chemical methods have been exploited to simultaneously create enhancement in ionic conductivity and mechanical properties, and some suggested ways have shown promise. However, the complex strategies have always introduced other challenge issues and incurred extra costs for manufacturing. In such a context, the development of dry solid state electrolytes is the central challenge to be faced worldwide.;This thesis deals with the approaches to improving ionic conductivity and mechanical properties simultaneously. The method is to apply two kinds of controllable organic fillers: copolymer and protein. Our work revealed that the commercial available copolymer, poly (ethylene oxide)- block-polyethylene (PEO-b-PE), possesses a capability for enhancing the multiple performances of poly(ethylene oxide)(PEO)-based polymer electrolyte. And the effects of composition and molecular weight of the copolymers on performance of the resulting SPEs were examined. It was found that increasing the PE block percentage in the copolymer resulted in a significant increase in both ionic conductivity and mechanical properties, while increasing the molecular weight of the copolymer resulted in better mechanical properties, and an identical ionic conductivity.;A rubber-like, soy protein-based SPE (s-SPE)was obtained by employing soy protein isolate (SPI), a soy product usually used as rigid fillers for enhancing mechanical properties of polymers, blended with poly(ethylene oxide)(PEO). The results indicated that the s-SPE with 55 wt% of SPI possesses a fully amorphous uniform structure having low Tg, in contrast with crystalline PEO-based SPE having discernable Tg and Tm. The conductivity and elasticity are both significantly improved with SPI involvement. Remarkably, this film has been elongated up to 100% without loss of ionic conductivity and 700% without mechanical damage.
机译:固态聚合物电解质(SPE)在安全性,可靠性,对温度的敏感性较低以及设计简单方面,比液态电解质更具优势。通过在锂电池中使用SPE,可以预期到高的比能量和比功率,安全的操作,包装的灵活性以及较低的制造成本。然而,在30年之后,由于低离子电导率和/或机械性能不足,SPE几乎没有商业上的成功,这两者都与聚合物链的运动有关。已开发出许多物理/化学方法来同时提高离子电导率和机械性能,并且一些建议的方法已显示出希望。但是,复杂的策略总是引入其他挑战性问题,并产生了额外的制造成本。在这样的背景下,干燥固态电解质的开发是世界范围内面临的主要挑战。本论文研究了同时提高离子电导率和机械性能的方法。方法是使用两种可控的有机填料:共聚物和蛋白质。我们的工作表明,市售的共聚物,聚(环氧乙烷)-嵌段聚乙烯(PEO-b-PE),具有增强基于聚(环氧乙烷)(PEO)的聚合物电解质的多种性能的能力。并考察了共聚物的组成和分子量对所得固相萃取性能的影响。发现增加共聚物中的PE嵌段百分比导致离子电导率和机械性能的显着增加,而增加共聚物的分子量导致更好的机械性能和相同的离子电导率。通过使用大豆蛋白分离物(SPI)获得大豆蛋白基SPE(s-SPE),该产品通常用作刚性填料以增强聚合物的机械性能,并与聚环氧乙烷(PEO)混合。结果表明,与具有可分辨的Tg和Tm的基于结晶PEO的SPE相反,具有55wt%的SPI的s-SPE具有具有低Tg的完全非晶的均匀结构。 SPI的参与可显着提高导电性和弹性。值得注意的是,该薄膜已被拉长至100%,而不会损失离子传导性,而被拉长至700%,而没有机械损伤。

著录项

  • 作者

    Ji, Jianying.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号