首页> 外文学位 >Fast hopping frequency synthesis techniques using injection locking.
【24h】

Fast hopping frequency synthesis techniques using injection locking.

机译:使用注入锁定的快速跳频合成技术。

获取原文
获取原文并翻译 | 示例

摘要

The use of fast-hopping frequency synthesis is a critical component of frequency-hopped spread spectrum (FHSS) systems. FHSS offers many advantages including high resistance to narrow-band interference, low probability of intercept and capability to share spectrum with other narrow-band systems. Such qualities make FHSS a particularly attractive scheme for military applications. In commercial applications, the WiMedia specification for ultra-wideband (UWB)/Wireless-USB presents another standard that uses fast frequency-hopping. The most stringent constraint on the frequency synthesizer in these systems is the band-switching time.This thesis presents novel techniques for fast-hopping frequency synthesis based on injection locking. First, extensive study of the transient behavior of oscillators under injection is presented. Analystical expressions are used as the basis for the study and interesting aspects of the locking process of an injection-locked oscillator (ILO) are identified. Two techniques, lock-range dependent fast-locking and predictive fast-locking, are then presented. In the first technique, fast locking times are achieved by using large lock-ranges for the ILO. Phase dependence of lock-time is exploited in the second technique and extremely fast settling is achieved. These theoretical findings are verified through simulation and measurements from a multiple of oscillator prototypes. Measurements from a low-speed Colpitts oscillator running at 57 MHz are used to verify tracking, out-of-lock behavior and frequency settling of ILOs. Measurements from an LC-oscillator implemented in 0.13-mum CMOS technology operating at a free-running frequency of 3.4 GHz are used to verify the dependence of locking time on the lock range and the initial phase of injection. Novel architectures for fast frequency-hopping synthesizers and high frequency direct-digital synthesizer are then presented.Finally, a complete prototype for WiMedia-UWB/Wireless-USB-compliant fasthopping frequency synthesizer architecture with quadrature outputs, based on subharmonic injection-locking, is presented. The synthesizer features a cross-coupled quadrature digitally-controlled oscillator, that is injection-locked to a sub-harmonic frequency. An intuitive closed-form expression for the dynamics of the quadrature injection-locked oscillator is derived. The overall design is a CMOS-only implementation and has been fabricated in 0.13-mum SiGe BiCMOS process. Measurement results indicate lock-times of less than 2.5 ns, a locked phase noise of -114 dBc/Hz at 1 MHz offset and a quadrature accuracy of better than 0.5°. The frequency synthesizer (excluding output buffers) occupies an area of 0.27 mm2 and consumes 14.5 mW of power. The best and worst-case spur suppression achieved are 47 and 31 dB, respectively. This is the lowest power fast-hopping quadrature frequency synthesizer reported to-date.
机译:快速跳频合成的使用是跳频扩频(FHSS)系统的关键组成部分。 FHSS具有许多优势,包括对窄带干扰的高抵抗力,较低的拦截概率以及与其他窄带系统共享频谱的能力。这种品质使FHSS成为军事应用中特别有吸引力的方案。在商业应用中,用于超宽带(UWB)/无线USB的WiMedia规范提出了另一个使用快速跳频的标准。这些系统中对频率合成器的最严格的限制是频带切换时间。本文提出了基于注入锁定的快速跳频合成的新技术。首先,对注入下振荡器的瞬态行为进行了广泛研究。解析表达式用作研究的基础,并且确定了注入锁定振荡器(ILO)锁定过程的有趣方面。然后介绍了两种技术,即依赖于锁定范围的快速锁定和预测性快速锁定。在第一种技术中,通过为ILO使用较大的锁定范围来实现快速锁定时间。在第二种技术中利用了锁定时间的相位依赖性,并且实现了极快的建立。这些理论发现通过多个振荡器原型的仿真和测量得到了验证。使用运行在57 MHz的低速Colpitts振荡器进行的测量可验证ILO的跟踪,开锁行为和频率稳定度。使用以0.13微米CMOS技术实现的LC振荡器的测量结果,该技术在3.4 GHz的自由运行频率下运行,用于验证锁定时间对锁定范围和注入初始阶段的依赖性。然后介绍了用于快速跳频合成器和高频直接数字合成器的新型架构。最后,基于次谐波注入锁定的,具有正交输出的,兼容WiMedia-UWB / Wireless-USB的快速跳频频率合成器架构的完整原型是提出了。该合成器具有交叉耦合的正交数字控制振荡器,该振荡器被注入锁定至次谐波频率。推导了用于正交注入锁定振荡器动力学的直观闭合形式表达式。总体设计是仅CMOS的实现,并采用0.13微米SiGe BiCMOS工艺制造。测量结果表明,锁定时间小于2.5 ns,在1 MHz偏移下的锁定相位噪声为-114 dBc / Hz,正交精度优于0.5°。频率合成器(不包括输出缓冲器)占用的面积为0.27 mm2,功耗为14.5 mW。最佳和最坏情况的杂散抑制分别为47 dB和31 dB。这是迄今为止报道的最低功耗的快速跳频正交频率合成器。

著录项

  • 作者

    Lanka, Narasimha.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号