首页> 外文学位 >Stochastic modeling and control of neural and small length scale dynamical systems.
【24h】

Stochastic modeling and control of neural and small length scale dynamical systems.

机译:神经和小规模动力学系统的随机建模和控制。

获取原文
获取原文并翻译 | 示例

摘要

Recent advancements in experimental and computational techniques have created tremendous opportunities in the study of fundamental questions of science and engineering by taking the approach of stochastic modeling and control of dynamical systems. Examples include but are not limited to neural coding and emergence of behaviors in biological networks. Integrating optimal control strategies with stochastic dynamical models has ignited the development of new technologies in many emerging applications. In this direction, particular examples are brain-machine interfaces (BMIs), and systems to manipulate submicroscopic objects. The focus of this dissertation is to advance these technologies by developing optimal control strategies under various feedback scenarios and system uncertainties.;Brain-machine interfaces (BMIs) establish direct communications between living brain tissue and external devices such as an artificial arm. By sensing and interpreting neuronal activity to actuate an external device, BMI-based neuroprostheses hold great promise in rehabilitating motor disabled subjects such as amputees. However, lack of the incorporation of sensory feedback, such as proprioception and tactile information, from the artificial arm back to the brain has greatly limited the widespread clinical deployment of these neuroprosthetic systems in rehabilitation. In the first part of the dissertation, we develop a systematic control-theoretic approach for a system-level rigorous analysis of BMIs under various feedback scenarios. The approach involves quantitative and qualitative analysis of single neuron and network models to the design of missing sensory feedback pathways in BMIs using optimal feedback control theory. As a part of our results, we show that the recovery of the natural performance of motor tasks in BMIs can be achieved by designing artificial sensory feedbacks in the proposed optimal control framework.;The second part of the dissertation deals with developing stochastic optimal control strategies using limited feedback information for applications in neural and small length scale dynamical systems. The stochastic nature of these systems coupled with the limited feedback information has greatly restricted the direct applicability of existing control strategies in stabilizing these systems. Moreover, it has recently been recognized that the development of advanced control algorithms is essential to facilitate applications in these systems. We propose a novel broadcast stochastic optimal control strategy in a receding horizon framework to overcome existing limitations of traditional control designs. We apply this strategy to stabilize multi-agent systems and Brownian ensembles. As a part of our results, we show the optimal trapping of an ensemble of particles driven by Brownian motion in a minimum trapping region using the proposed framework.
机译:通过采用随机建模和动力学系统控制方法,实验和计算技术的最新发展为科学和工程学的基本问题研究创造了巨大的机会。示例包括但不限于神经编码和生物网络中行为的出现。将最优控制策略与随机动力学模型集成在一起,已经激发了许多新兴应用中新技术的发展。在这个方向上,特定的示例是脑机接口(BMI)和操纵亚微观对象的系统。本文的重点是通过开发在各种反馈情况和系统不确定性下的最优控制策略来发展这些技术。脑机接口(BMI)建立了活体脑组织与诸如人工手臂之类的外部设备之间的直接通信。通过感知和解释神经元活动来激活外部设备,基于BMI的神经假体在康复运动障碍者(如截肢者)方面具有广阔的前景。但是,缺乏从人工手臂到大脑的感觉反馈(如本体感受和触觉信息)的结合,极大地限制了这些神经修复系统在康复中的广泛临床应用。在论文的第一部分,我们开发了一种系统的控制理论方法,用于在各种反馈情况下对BMI进行系统级的严格分析。该方法涉及对单个神经元和网络模型的定量和定性分析,以使用最佳反馈控制理论设计BMI中缺失的感觉反馈途径。作为结果的一部分,我们表明,通过在建议的最优控制框架中设计人工感官反馈,可以实现BMI中运动任务自然性能的恢复。;论文的第二部分涉及开发随机最优控制策略。使用有限的反馈信息在神经和小规模动力学系统中的应用。这些系统的随机性,加上有限的反馈信息,极大地限制了现有控制策略在稳定这些系统中的直接适用性。而且,最近已经认识到高级控制算法的开发对于促进这些系统中的应用是必不可少的。为了克服传统控制设计的现有局限性,我们在后退的框架内提出了一种新颖的广播随机最优控制策略。我们应用此策略来稳定多智能体系统和布朗合奏。作为结果的一部分,我们使用提出的框架显示了在最小捕获区域中由布朗运动驱动的粒子整体的最佳捕获。

著录项

  • 作者

    Kumar, Gautam.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Biomedical.;Biology Neuroscience.;Engineering General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 288 p.
  • 总页数 288
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号