首页> 外文学位 >Data-driven modeling of hydroclimatic trends and soil moisture: Multi-scale data integration and decision support.
【24h】

Data-driven modeling of hydroclimatic trends and soil moisture: Multi-scale data integration and decision support.

机译:数据驱动的水文气候趋势和土壤湿度建模:多尺度数据集成和决策支持。

获取原文
获取原文并翻译 | 示例

摘要

The techniques and information employed for decision-making vary with the spatial and temporal scope of the assessment required. In modern agriculture, the farm owner or manager makes decisions on a day-to-day or even hour-to-hour basis for dozens of fields scattered over as much as a fifty-mile radius from some central location. Following precipitation events, land begins to dry. Land-owners and managers often trace serpentine paths of 150+ miles every morning to inspect the conditions of their various parcels. His or her objective lies in appropriate resource usage -- is a given tract of land dry enough to be workable at this moment or would he or she be better served waiting patiently? Longer-term, these owners and managers decide upon which seeds will grow most effectively and which crops will make their operations profitable. At even longer temporal scales, decisions are made regarding which fields must be acquired and sold and what types of equipment will be necessary in future operations. This work develops and validates algorithms for these shorter-term decisions, along with models of national climate patterns and climate changes to enable longer-term operational planning.;A test site at the University of Illinois South Farms (Urbana, IL, USA) served as the primary location to validate machine learning algorithms, employing public sources of precipitation and potential evapotranspiration to model the wetting/drying process. In expanding such local decision support tools to locations on a national scale, one must recognize the heterogeneity of hydroclimatic and soil characteristics throughout the United States. Machine learning algorithms modeling the wetting/drying process must address this variability, and yet it is wholly impractical to construct a separate algorithm for every conceivable location. For this reason, a national hydrological classification system is presented, allowing clusters of hydroclimatic similarity to emerge naturally from annual regime curve data and facilitate the development of cluster-specific algorithms. Given the desire to enable intelligent decision-making at any location, this classification system is developed in a manner that will allow for classification anywhere in the U.S., even in an ungauged basin. Daily time series data from 428 catchments in the MOPEX database are analyzed to produce an empirical classification tree, partitioning the United States into regions of hydroclimatic similarity. In constructing a classification tree based upon 55 years of data, it is important to recognize the non-stationary nature of climate data. The shifts in climatic regimes will cause certain locations to shift their ultimate position within the classification tree, requiring decision-makers to alter land usage, farming practices, and equipment needs, and algorithms to adjust accordingly. This work adapts the classification model to address the issue of regime shifts over larger temporal scales and suggests how land-usage and farming protocol may vary from hydroclimatic shifts in decades to come.;Finally, the generalizability of the hydroclimatic classification system is tested with a physically-based soil moisture model calibrated at several locations throughout the continental United States. The soil moisture model is calibrated at a given site and then applied with the same parameters at other sites within and outside the same hydroclimatic class. The model's performance deteriorates minimally if the calibration and validation location are within the same hydroclimatic class, but deteriorates significantly if the calibration and validates sites are located in different hydroclimatic classes. These soil moisture estimates at the field scale are then further refined by the introduction of LiDAR elevation data, distinguishing faster-drying peaks and ridges from slower-drying valleys. The inclusion of LiDAR enabled multiple locations within the same field to be predicted accurately despite non-identical topography. This cross-application of parametric calibrations and LiDAR-driven disaggregation facilitates decision-support at locations without proximally-located soil moisture sensors.
机译:用于决策的技术和信息随所需评估的时空范围而变化。在现代农业中,农场主或管理者每天或什至每小时都对从某个中心位置散布在多达50英里半径范围内的数十个田地做出决策。降雨事件发生后,土地开始干燥。土地所有者和管理者通常每天早晨追踪150多英里的蜿蜒小路,以检查其各个包裹的状况。他或她的目标在于合理地利用资源-给定的土地是否足够干燥以使其在此时可工作,或者会更好地耐心等待他或她?从长远来看,这些所有者和管理者决定哪种种子将最有效地生长,哪种作物将使他们的业务盈利。在更长的时间尺度上,将决定必须购买和出售哪些油田以及将来的操作中将需要哪种类型的设备。这项工作开发并验证了这些短期决策的算法,以及国家气候模式和气候变化的模型,以实现长期的运营计划。;伊利诺伊大学南方农场分校的测试站点(美国伊利诺伊州厄巴纳)作为验证机器学习算法的主要位置,它利用公共降水和潜在蒸散量来模拟润湿/干燥过程。在将这种地方决策支持工具扩展到全国范围内时,必须认识到整个美国水文气候和土壤特征的异质性。对润湿/干燥过程进行建模的机器学习算法必须解决这一可变性,但是为每个可能的位置构造一个单独的算法是完全不切实际的。因此,提出了一个国家水文分类系统,可以使年度气候曲线数据自然而然地出现水文气候相似性类群,并促进特定类群算法的开发。鉴于希望在任何位置进行智能决策,该分类系统的开发方式将允许在美国任何地方进行分类,即使是在未开放的盆地中也是如此。分析来自MOPEX数据库中428个集水区的每日时间序列数据,以产生经验分类树,将美国划分为水文气候相似区域。在建立基于55年数据的分类树时,重要的是要认识到气候数据的非平稳性。气候状况的变化将导致某些位置在分类树中的最终位置发生变化,从而要求决策者改变土地使用,耕作方式和设备需求,并相应地调整算法。这项工作适应了分类模型,以解决较大时间尺度上的政权转移问题,并提出了土地使用和耕作规程在未来几十年内可能与水文气候变化不同的方法;最后,用以下方法测试了水文气候分类系统的可推广性:基于物理的土壤湿度模型在美国大陆的多个位置进行了校准。在给定地点校准土壤湿度模型,然后在相同水文气候类别内外的其他地点以相同参数应用土壤水分模型。如果校准和验证位置在同一水文气候等级内,则模型的性能降幅最小,但如果校准和验证地点位于不同的水文气候等级内,则模型性能将显着降低。然后,通过引入LiDAR高程数据进一步细化田间尺度上的这些土壤湿度估计值,从而将较快干燥的峰和脊与较慢干燥的谷区分开。包括LiDAR,尽管地形不同,但仍可以准确预测同一字段内的多个位置。参数校准和LiDAR驱动的分解的这种交叉应用有助于在没有近端放置土壤湿​​度传感器的位置提供决策支持。

著录项

  • 作者

    Coopersmith, Evan Joseph.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Civil.;Remote Sensing.;Engineering Agricultural.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号