首页> 外文学位 >Modern stromatolite microbial diversity in Yellowstone National Park, Wyoming in the context of microbial alpha and beta diversity along Yellowstone geothermal outfalls.
【24h】

Modern stromatolite microbial diversity in Yellowstone National Park, Wyoming in the context of microbial alpha and beta diversity along Yellowstone geothermal outfalls.

机译:怀俄明州黄石国家公园的现代叠层岩微生物多样性,这是沿黄石地热排污口的微生物α和β多样性的背景。

获取原文
获取原文并翻译 | 示例

摘要

To better understand the diversity of mechanisms for stromatolite morphogenesis as well as the diversity of microorganisms and microbial metabolisms associated with stromatolites it is imperative to describe the biological attributes of the full diversity of "living" stromatolite-like geobiological structures worldwide. It is of additional interest to describe geographically and geochemically comparable ecosystems but lacking stromatolites to stromatolite-forming environments to unravel the geochemical and microbiological aspects of stromatolite morphogenesis. Here we present a living stromatolite system in a Yellowstone National Park (YNP) hot spring that exhibits features in contrast to many popularly studied modern stromatolite analogs. Most notably, the YNP stromatolites are more finely laminated than living marine stromatolites and may be a more suitable textural analog to finely laminated stromatolites found in the rock record. The YNP stromatolites are composed of silica-encrusted cyanobacterial mats. The predominant lithofacies of the YNP stromatolite is comprised of silica-encrusted filaments and is distinctly laminated. The laminated quality of the main lithofacies is due to an alternating---possibly on a diurnal cycle---growth orientation of filamentous cyanobacteria.;Two cyanobacterial mat types grow on the stromatolite surfaces and are preserved as two distinct lithofacies. One mat is present when the stromatolites are submerged or at the water-atmosphere interface and the other when stromatolites protrude from the hot spring. The lithofacies created by the encrustation of submerged mats constitutes the bulk of the stromatolites, is comprised of silica-encrusted filaments, and is distinctly laminated. To better understand the cyanobacterial membership and community structure differences between the mats, we collected mat samples from each type. Molecular methods revealed that submerged mat cyanobacteria were predominantly one novel phylotype while the exposed mats were predominantly heterocystous phylotypes (Chlorogloeopsis HTF and Fischerella). The cyanobacterium dominating the submerged mat type does not belong in any of the subphylum groups of cyanobacteria recognized by the Ribosomal Database Project and has also been found in association with travertine stromatolites in a Southwest Japan hot spring. Cyanobacterial membership profiles indicate that the heterocystous phylotypes are 'rare biosphere' members of the submerged mats. The heterocystous phylotypes likely emerge when the water level of the hot spring drops. Environmental pressures tied to water level such as sulfide exposure and possibly oxygen tension may inhibit the heterocystous types in submerged mats.;In contrast to living marine examples where the interplay of pCO2 and [ Ca+2 ] is the main influence on microbial lithification, the lithification in the YNP system is driven by a rapid decrease in silica solubility between high-temperature subsurface water emitted from the hot spring vent and lower-temperature surface water. The continuously favorable conditions for rapid lithification in the hot spring system coupled to a cyanobacterial diurnal growth cycle that manifests itself as fine laminations in the stromatolite lithofacies leads to a growth rate for the YNP stromatolite on the order of centimeters of deposition in several months. The YNP system displays a perhaps overlooked mechanism for stromatolite morphogenesis and is compelling both for the presence of a seemingly unstudied cyanobacterium as well as a finely-laminated modern stromatolite analog of which there are few other examples.
机译:为了更好地理解叠层石形态发生机理的多样性以及与叠层石相关的微生物和微生物代谢的多样性,必须描述全世界“活着的”类叠层石状地球生物学结构的全部多样性的生物学特性。描述地理和地球化学上可比的生态系统,但缺乏层间岩与层间岩形成环境,以揭示层间岩形态发生的地球化学和微生物学方面,是额外的兴趣所在。在这里,我们介绍了黄石国家公园(YNP)温泉中现存的叠层石系统,该系统呈现出与许多流行的现代叠层石类似物相反的特征。最值得注意的是,YNP叠层石比活的海洋叠层石更精细地层压,并且可能是岩石记录中发现的精细叠层的叠层石的更合适的组织结构类似物。 YNP叠层石由二氧化硅包裹的蓝细菌垫组成。 YNP叠层石的主要岩相由石英包裹的细丝组成,并且明显地层压在一起。主要岩相的层状质量是由于丝状蓝细菌的交替-可能是在昼夜循环中-的生长方向而引起的。;两种叠层毡垫在叠层石表面生长,并保存为两个不同的岩相。当叠层石被淹没时或在水-大气界面处存在一个垫层,而当叠层石从温泉中伸出时则存在另一个垫层。由浸没垫子的结壳形成的岩相构成了叠层石的主体,由二氧化硅包裹的细丝组成,并且被明显地层压。为了更好地了解垫子之间的蓝细菌成员和群落结构差异,我们收集了每种类型的垫子样品。分子方法表明,淹没的垫蓝细菌主要是一种新的系统型,而裸露的垫则主要是杂囊性系统型(Chlorogloeopsis HTF和Fischerella)。淹没垫类型占主导地位的蓝细菌不属于核糖体数据库计划认可的任何蓝细菌亚门类,在日本西南温泉中也发现与钙华叠层石有关。蓝细菌成员概况表明,异囊系统型是淹没垫的“罕见生物圈”成员。当温泉水位下降时,可能会出现异型囊型。与水位相关的环境压力,例如硫化物的暴露和可能的氧气张力,可能会抑制水下垫中的异囊藻类型。与海洋中的实例相反,其中pCO2和[Ca + 2]的相互作用是微生物石化的主要影响因素, YNP系统中的石化作用是由从温泉排放口喷出的高温地下水和低温地表水之间的二氧化硅溶解度快速下降所驱动的。温泉系统中快速石化的持续有利条件,加上蓝藻昼夜生长周期,其表现为叠层石岩相中的精细叠层,导致YNP叠层石的生长速率在数月内达到厘米级。 YNP系统显示了叠层石形态发生的一种可能被忽视的机制,并且对于似乎未被研究的蓝细菌以及精细叠层的现代叠层石类似物的存在都极具吸引力。

著录项

  • 作者

    Pepe-Ranney, Charles.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Geology.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号