首页> 外文学位 >Thermodynamic Properties of Organometallic Dihydrogen Complexes for Hydrogen Storage Applications.
【24h】

Thermodynamic Properties of Organometallic Dihydrogen Complexes for Hydrogen Storage Applications.

机译:储氢应用中的有机金属二氢配合物的热力学性质。

获取原文
获取原文并翻译 | 示例

摘要

The mechanism and thermodynamic properties of hydrogen binding to the solid-state complexes [M(CO)dppe2][BArF24] (M = Mn, Re, Tc) and [M'Hdppe2][NTf2] (M' = Fe, Ru, Os) were investigated experimentally and computationally over the temperature range 298K-373K and pressure range 0-2800 torr, based on the Sieverts method. The bulk absorption behavior was found to be accurately described by Langmuir isotherms. Enthalpy and entropy values of ΔH° = -52.2 kJ/mol and ΔS° = -99.6 J/mol-K were obtained experimentally for hydrogen absorption onto [Mn(CO)dppe2][BArF24] from the Langmuir equilibrium constant, and values obtained from electronic structure calculations using the LANL2DZ-ECP basis set were found to successfully reproduce both the pressure-temperature-composition behavior and the thermodynamic values to within 5% of those obtained through experiment. Results from simulations for all complexes yielded large enthalpy values similar to metal hydride formation enthalpies for all complexes studied, and the substitution of the metal center reproduced qualitative binding strength trends of 5d>3d>4d consistent with those previously reported for the group 6 metals. X-ray diffraction patterns and Mössbauer spectra were taken to determine the thermal decomposition pathway for [FeH(η2-H 2)dppe2][NTf2]. Simulations at the B3LYP/TZVP level of theory and experimental Mössbauer spectra confirmed the direct thermal decomposition from singlet-state [FeH(η2-H 2)dppe2][NTf2] to triplet-state [FeHdppe 2][NTf2] under vacuum conditions at 398K. Evaluation of the partial quadrupole splitting values of Q(H2) = -0.245 mm/s from Mössbauer spectroscopy significantly differ from typical values obtained for hydrides, indicating an underutilized mechanism for identification of dihydrogen ligands. Singlet-state thermodynamic values from simulation were consistent with experimental observations for Ru and Os, and ruthenium complexes were found to have thermodynamic properties within appropriate ranges for hydrogen storage applications. Simulated thermodynamic values for Fe complexes were found to significantly underestimate experimental behavior, demonstrating the importance of the magnetic spin state of the molecule to hydrogen binding properties.
机译:氢与固态配合物[M(CO)dppe2] [BArF24](M = Mn,Re,Tc)和[M'Hdppe2] [NTf2](M'= Fe,Ru,基于Sieverts方法,在298K-373K的温度范围和0-2800托的压力范围内进行了实验和计算研究。发现大量吸收行为由Langmuir等温线准确地描述。通过Langmuir平衡常数,通过实验获得了氢吸收到[Mn(CO)dppe2] [BArF24]上的焓和熵值ΔH°= -52.2 kJ / mol和ΔS°= -99.6 J / mol-K使用LANL2DZ-ECP基础集进行电子结构计算得出的结果表明,压力-温度-组成行为和热力学值均成功地再现到通过实验获得的值的5%以内。所有复合物的模拟结果得出的焓值均与所研究的所有复合物的金属氢化物形成焓相似,并且金属中心的取代重现了5d> 3d> 4d的定性结合强度趋势,与先前报道的第6组金属一致。用X射线衍射图和穆斯堡尔光谱确定[FeH(η2-H2)dppe2] [NTf2]的热分解途径。在理论和实验Mössbauer光谱的B3LYP / TZVP级别上进行的模拟证实了在真空条件下,在真空条件下,从单重态[FeH(η2-H2)dppe2] [NTf2]到三重态[FeHdppe 2] [NTf2]的直接热分解。 39.8万根据Mössbauer光谱法对Q(H2)=(-0.245 mm / s)的部分四极分裂值的评估与氢化物的典型值明显不同,这表明用于鉴定二氢配体的机制未得到充分利用。从模拟得出的单重态热力学值与对Ru和Os的实验观察结果一致,并且发现钌配合物在适合储氢应用的范围内具有热力学性质。已发现Fe配合物的模拟热力学值大大低估了实验行为,表明该分子的磁性自旋态对氢键合性质的重要性。

著录项

  • 作者

    Abrecht, David Gregory.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号