首页> 外文学位 >Electric and magnetic one- and two-dimensionally tuned parameter-agile substrate integrated waveguide components and devices
【24h】

Electric and magnetic one- and two-dimensionally tuned parameter-agile substrate integrated waveguide components and devices

机译:电动和磁性一维和二维调谐参数捷变基板集成波导部件和设备

获取原文
获取原文并翻译 | 示例

摘要

In this work, new types of microwave tunable devices, circuits and components based on substrate integrated waveguide (SIW) are presented. SIW technology can be considered as a synthesized planar form of rectangular waveguide, and inherits almost all of its properties. For example, similar to rectangular waveguide, SIW is lower in loss, it can be used for higher power applications compared to conventional planar counterparts, and it is lower in cost. Although SIW is similar to rectangular waveguide in many aspects, it holds a significant difference in terms of size. Rectangular waveguide is usually made of hollow metallic tube (rectangular or circular), therefore at a given frequency, its size is much larger than the conventional planar transmission lines (microstrip or coplanar). Thus, even though rectangular waveguide being capable of delivering outstanding RF performance cannot be directly used in realizing compact planar circuits. Since SIW technology inherits almost all the properties of rectangular waveguide and also it is planar in nature, it is an outstanding candidate in realizing microwave and millimeter wave planar integrated circuits. However, SIW is usually fabricated on dielectric substrate, thus its power handling capabilities and its performance in terms of losses are largely dependent upon substrate material used and structure topology.;In this work, SIW-based microwave tunable devices, circuits and components using ferromagnetic materials are presented. Ferrites or ferromagnetic material permeability value can be controlled through the application of an external DC magnetic bias. Since the propagation constant of an RF signal is directly proportional to the square root of the material permittivity and permeability. Therefore, any change in the permeability component also changes the propagation constant of the electromagnetic wave. Thus, using ferrite materials allow the realization of very interesting reconfigurable devices. Another important characteristic of ferrite materials is that they display non-reciprocal behaviour. This means that RF signals, propagating in two different directions in the ferrite material can have different characteristic behaviours. This is a very interesting feature, which can be used not only to realize tunable microwave devices, but also devices that are non-reciprocal in nature. Some of the ferrite-based non-reciprocal devices include isolator, gyrator, and circulator. In literature, it can be observed that most of the nonreciprocal and tunable devices using ferrite materials are designed based on rectangular waveguide technology. The low loss and high power handling property of rectangular waveguide make them an attractive candidate in realizing ferrite based tunable devices. Moreover, for a rectangular waveguide operating with dominant TE10 mode, the maximum magnitude of its electric field occurs at the central region, whereas the maximum magnitude of its magnetic field occurs along the sidewalls. This distribution of electric and magnetic fields, allows placing the ferrite materials in the regions of the highest magnetic field without perturbing the electric field distribution. Since the ferrite materials interact strongly with magnetic field, they are usually placed in the regions where the magnetic field concentration is highest. Although rectangular waveguide is a very promising technology in realizing high power magnetically tunable devices, they cannot be readily integrated in a planar form. Therefore, one of the purposes of this thesis is to realize SIW based magnetically tunable ferrite loaded microwave devices that are planar in nature and at the same time retain all the good qualities offered by the rectangular waveguide.;In this work, key microwave magnetically tunable devices, circuits and components including resonator, band pass filter, oscillator, switch, phase shifter, circulator, and power amplifier are presented. It is also demonstrated that using only ferrite materials, the device total tuning range and performance are limited. However, by combining an innovative simultaneous electric tuning with the magnetic tuning, the total tuning range can be significantly extended, and also the circuit performance can be improved. Therefore, in this work, a new concept of two-dimensional tuning (simultaneous electric and magnetic tuning) is also introduced and demonstrated. This concept is then used to realize fully-adaptable and reconfigurable band pass filter, resonator and antenna. Special features of the proposed two-dimensional parameter tuning are revealed and discussed.
机译:在这项工作中,提出了基于衬底集成波导(SIW)的新型微波可调器件,电路和组件。 SIW技术可以被视为矩形波导的合成平面形式,并且继承了其几乎所有的特性。例如,类似于矩形波导,SIW的损耗较低,与传统的平面同类产品相比,它可用于更高功率的应用,并且成本较低。尽管SIW在许多方面与矩形波导相似,但在尺寸方面却存在很大差异。矩形波导通常由空心金属管(矩形或圆形)制成,因此在给定的频率下,其尺寸比常规的平面传输线(微带或共面)大得多。因此,即使能够提供出色的RF性能的矩形波导不能直接用于实现紧凑的平面电路。由于SIW技术几乎继承了矩形波导的所有特性,并且本质上是平面的,因此它是实现微波和毫米波平面集成电路的杰出候选者。但是,SIW通常是在介电基片上制造的,因此其功率处理能力和损耗性能在很大程度上取决于所用的基片材料和结构拓扑。在这项工作中,基于SIW的微波可调器件,电路和使用铁磁的组件介绍了材料。铁氧体或铁磁材料的磁导率值可以通过施加外部直流磁偏置来控制。由于RF信号的传播常数与材料介电常数和磁导率的平方根成正比。因此,磁导率分量的任何变化也会改变电磁波的传播常数。因此,使用铁氧体材料可以实现非常有趣的可重构设备。铁氧体材料的另一个重要特征是它们表现出不可逆的行为。这意味着在铁氧体材料中沿两个不同方向传播的RF信号可能具有不同的特性行为。这是一个非常有趣的功能,不仅可以用于实现可调谐微波设备,而且可以用于本质上不可逆的设备。一些基于铁氧体的不可逆器件包括隔离器,回转器和循环器。在文献中,可以观察到,大多数使用铁氧体材料的不可逆和可调器件都是基于矩形波导技术设计的。矩形波导的低损耗和高功率处理特性使其成为实现基于铁氧体的可调器件的诱人候选。此外,对于以主导TE10模式工作的矩形波导,其电场的最大强度出现在中心区域,而磁场的最大强度发生在侧壁。电场和磁场的这种分布允许将铁氧体材料放置在最高磁场的区域中,而不会干扰电场分布。由于铁氧体材料与磁场强烈相互作用,因此通常将它们放置在磁场浓度最高的区域。尽管矩形波导是实现高功率磁可调器件的一项非常有前途的技术,但它们不能轻易地以平面形式集成。因此,本发明的目的之一是要实现基于SIW的可磁调谐的铁氧体加载的微波器件,该器件本质上是平面的,同时保留了矩形波导提供的所有优良品质。提出了包括谐振器,带通滤波器,振荡器,开关,移相器,环行器和功率放大器的器件,电路和组件。还证明了仅使用铁氧体材料,器件的总调谐范围和性能受到限制。但是,通过将创新的同步电调谐与磁调谐相结合,可以大大扩展总调谐范围,并且还可以改善电路性能。因此,在这项工作中,还介绍和演示了二维调谐(同时进行电和磁调谐)的新概念。然后,将这一概念用于实现完全可调和可重新配置的带通滤波器,谐振器和天线。揭示和讨论了所提出的二维参数调整的特殊功能。

著录项

  • 作者

    Adhikari, Sulav.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号