首页> 外文学位 >Improving Snow Processes in WRF/SSiB Regional Climate Model to Investigate Aerosols-in-Snow Impacts over North America and Sub-Regions.
【24h】

Improving Snow Processes in WRF/SSiB Regional Climate Model to Investigate Aerosols-in-Snow Impacts over North America and Sub-Regions.

机译:改善WRF / SSiB区域气候模型中的降雪过程,以调查北美和亚地区的雪中气溶胶影响。

获取原文
获取原文并翻译 | 示例

摘要

Two important factors that control snow albedo are snow aging (grain growth) and presence of light-absorbing impurities (aerosols) in snow. However, most current regional climate models do not include such processes in a physically-based manner in their land surface models, which can have serious implications to simulated surface energy and water budgets, and ultimately to water resources and regional climate. We improve snow albedo calculations in the Simplified Simple Biosphere (SSiB) land surface model coupled with the Weather Research and Forecasting (WRF) regional climate model (RCM), by incorporating the SNow ICe And Radiative (SNICAR) scheme. SNICAR is a snow radiative transfer model that simulates snow albedo evolution due to snow grain growth and presence of aerosols in snow in a physically-based manner. The land surface model is further modified to account for deposition, movement, and removal by meltwater of such impurities in the snowpack. The newly modified SSiB-3 land surface model (LSM) is validated offline with in situ observations at a location in Western U.S. (WUS), and shows significant improvements in simulated snow albedo and depth when dust in snow is considered, and reproduces snow grain size and vertical distribution of dust in snow that are comparable to those observed.;The online, coupled version of the new model, WRF/SSiB-3/aer, is then employed to conduct two 10-year long simulations over North America -- aerosols-loaded (AER) snow and clean snow (NOAER) cases -- to investigate the impact of aerosols in snow (AIS) on surface energy (SEB) and water (WB) budgets on a regional scale. GOCART surface aerosol deposition data is used in AER scenario. Comparisons between AER and NOAER simulations reveal albedo is reduced the most during the ablation period in the presence of AIS, inducing a surface radiative forcing (RF) ranging 8.5 W/m2 over WUS to 13.6 W/m2 over NCan during MAM and MJJ (10-year means), respectively, but as high as 65 W/m2 during peak ablation. This corresponds to an increase in skin temperature (TSK) of 0.5 °C and a subsequent spring snow mass reduction ranging 12 - 45 mm in the aerosol-loaded snow case. Changes found in our study are higher than those found by GCM simulations, RF being an order of magnitude large in our RCM simulation, for example. On a sub-regional scale, our simulations reveal mountainous areas like the Sierra Nevada and Rockies see larger changes in TSK, runoff, and soil moisture (SM) due to AIS at higher elevation during the spring season. Furthermore, the Sierras see a net decrease in SM, which we show can have implications to wildfire vulnerability, while in the southern Rockies AIS cause shifts in runoff timing (9-year mean of 3.5 days earlier).
机译:控制雪反照率的两个重要因素是雪的老化(谷物生长)和雪中存在吸光杂质(气溶胶)。但是,大多数当前的区域气候模型在其地面模型中并未以物理方式包括此类过程,这可能对模拟的地表能量和水的预算以及最终对水资源和区域气候产生严重影响。我们通过合并SNow ICe和辐射(SNICAR)方案,在简化的简单生物圈(SSiB)地表模型以及天气研究和预报(WRF)区域气候模型(RCM)的基础上改进了雪反照率的计算。 SNICAR是一种雪辐射传输模型,它以物理方式模拟由于雪粒增长和雪中存在气溶胶而导致的雪反照率演变。对陆面模型进行了进一步修改,以解决积雪中此类杂质的沉积,移动和去除。新修改的SSiB-3地表模型(LSM)已在美国西部(WUS)的某个位置进行了现场观测,并进行了离线验证,并且在考虑雪中尘埃的情况下,模拟雪反照率和深度都有显着改善,并复制了雪粒雪中​​尘埃的大小和垂直分布与所观察到的相当;新模型的在线耦合版本WRF / SSiB-3 / aer随后被用于在北美进行两次为期10年的模拟-装有气溶胶的雪(AER)和无尘雪(NOAER)案例-在区域范围内调查雪中的气溶胶(AIS)对表面能(SEB)和水(WB)预算的影响。 GOCART表面气溶胶沉积数据用于AER方案。 AER和NOAER模拟之间的比较表明,在存在AIS的情况下,在消融期间反照率减少最多,在MAM和MJJ期间,表面辐射强迫(RF)在WUS上为8.5 W / m2,在NCan上为13.6 W / m2(10 -年平均值),但在峰值消融期间高达65 W / m2。这对应于皮肤温度(TSK)升高0.5°C,随后在装有气溶胶的雪箱中春季雪量减少了12-45 mm。在我们的研究中发现的变化高于通过GCM仿真发现的变化,例如,在我们的RCM仿真中,RF大一个数量级。在次区域范围内,我们的模拟显示,内华达山脉和落基山脉等山区在春季由于高海拔地区的AIS而出现了TSK,径流和土壤湿度(SM)的较大变化。此外,塞拉利昂的SM净减少,我们发现这可能对野火脆弱性有影响,而在落基山脉南部的AIS则导致径流时间发生变化(9年平均值为3.5天)。

著录项

  • 作者

    Oaida, Catalina Monica.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Atmospheric sciences.;Meteorology.;Hydrologic sciences.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号