首页> 外文学位 >Development of a Vascular Optical Tomographic Imaging System for the Diagnosis and Monitoring of Peripheral Arterial Disease.
【24h】

Development of a Vascular Optical Tomographic Imaging System for the Diagnosis and Monitoring of Peripheral Arterial Disease.

机译:开发用于诊断和监测周围动脉疾病的血管光学层析成像系统。

获取原文
获取原文并翻译 | 示例

摘要

The overall goal of this dissertation is to describe the development of a dynamic diffuse optical tomographic (DDOT) imaging system for the diagnosis and monitoring of peripheral arterial disease (PAD) within the lower extremities. PAD affects 8--12 million individuals in the United States and is associated with significant morbidity and mortality. Early detection and monitoring of disease progression is crucial, but remains difficult. This is especially true for diabetic patients, as roughly 30 percent of all diabetic patients over the age of 50 are diagnosed with PAD. Diabetic patients have calcified arteries, which renders them incompressible. This falsely elevates blood pressure readings and causes false negative readings using traditional diagnostic techniques. DDOT offers an attractive opportunity to overcome current shortcomings in assessing PAD. This technology uses harmless near-infrared light to create three-dimensional, time-dependent images of biological tissues. Using DDOT to measure blood-perfusion in the foot should help diagnose and monitor the PAD. To test this hypothesis, I adapted an existing optical tomographic imaging system for the particular application of vascular imaging in the foot. In particular I design and tested various measuring probes that can accommodate different foot sizes and shapes. The result was a patient friendly interface that can be employed in a clinical setting. Using this modified DDOT imager, which we called vascular optical tomographic imaging (VOTI) system, I conducted a 40-subject pilot study to quantify its ability to diagnose PAD. The subjects were recruited into three cohorts, non-diabetic PAD patients (N=10), PAD Patients (N=10) and healthy volunteers (N=20). With this data in hand, I performed a comprehensive data analysis, in which I found imaging features that led to a good separation between the healthy and affected cohorts. In particular I demonstrated that statistically significant difference exist between the amount of blood pooling in the leg during a 1-minute, 60mmHg thigh cuff occlusion within healthy subjects and both affected cohorts (P=0.006, P=0.006). In addition, using receiver operating characteristic (ROC) curve analysis, I identified that the new VOTI system could diagnose PAD with a sensitivity and specificity of over 80%, even within the diabetic patients. This imaging modality was also capable of identifying the severity of the disease with similar accuracy to the existing diagnostic methods while not being inhibited by arterial calcifications. Furthermore, the VOTI system provided spatial information, helping identify which regions of the foot suffered from mal-perfusion. When combined with angiosome theory, the spatial information could help physicians in deciding how to intervene in PAD patients.;After completing this first clinical study, I developed a dedicated VOTI system by entirely redesigning the hard and software. This new system has many novelties over its predecessor. First it employs a contact-free patient interface that allows to imaging patients with ulcerations. The illumination fibers used do not need to make physical contact with the patient. Second, instead of using individual silicon photodiodes as detectors, a highly sensitive CCD camera is use to detect transmitted light intensity. The system has two wavelengths of light (660 and 860 nm), which can be illuminated at up to 20 different positions along the surface of the foot. The system is built for dynamic imaging and is capable of imaging at a multispectral-volumetric frame rate speeds of 1 Hz. This set-up allows us to create three-dimensional images of large portions of the foot. This imaging system was tested on phantom studies and healthy volunteers and was shown to be able to image blood flow dynamics within a three-dimensional volume of the foot.
机译:本文的总体目标是描述动态弥散光学断层扫描(DDOT)成像系统的开发,该系统用于诊断和监测下肢周围的动脉疾病(PAD)。 PAD在美国影响8--12百万个体,并与大量发病率和死亡率相关。尽早发现和监测疾病进展至关重要,但仍然很困难。对于糖尿病患者尤其如此,因为在所有50岁以上的糖尿病患者中,大约30%被诊断为PAD。糖尿病患者的动脉钙化,使其不可压缩。使用传统的诊断技术,这会错误地升高血压读数并导致错误的负读数。 DDOT提供了一个有吸引力的机会来克服当前评估PAD的缺点。这项技术使用无害的近红外光创建生物组织的三维时间相关图像。使用DDOT测量脚部的血液灌注应该有助于诊断和监测PAD。为了验证这一假设,我将现有的光学层析成像系统改编为用于足部血管成像的特定应用。我特别设计并测试了各种可适应不同脚型和脚型的测量探针。结果是可以在临床环境中使用的患者友好界面。使用这种改良的DDOT成像仪(我们称为血管光学断层成像(VOTI)系统),我进行了40个主题的先导研究,以量化其诊断PAD的能力。将受试者分为三组,即非糖尿病PAD患者(N = 10),PAD患者(N = 10)和健康志愿者(N = 20)。掌握了这些数据后,我进行了全面的数据分析,在其中我发现了可以使健康人群和患病人群之间良好隔离的影像特征。特别是,我证明了健康受试者与1个受累人群之间1分钟60mmHg大腿套囊阻塞期间腿部积血量之间存在统计学上的显着差异(P = 0.006,P = 0.006)。另外,通过使用接收器工作特性(ROC)曲线分析,我确定了即使在糖尿病患者中,新的VOTI系统也可以以超过80%的灵敏度和特异性诊断PAD。这种成像方式还能够以与现有诊断方法相似的准确度来识别疾病的严重性,而不受动脉钙化的抑制。此外,VOTI系统提供了空间信息,有助于识别脚的哪些区域受到灌注不良的影响。当与血管体理论结合使用时,空间信息可以帮助医生决定如何干预PAD患者。在完成了第一项临床研究后,我通过重新设计硬件和软件开发了专用的VOTI系统。这个新系统比以前的系统有许多新颖之处。首先,它采用了非接触式患者界面,可以对溃疡患者进行成像。所使用的照明纤维不需要与患者进行身体接触。其次,不是使用单个的硅光电二极管作为检测器,而是使用高灵敏度的CCD摄像机来检测透射的光强度。该系统具有两个波长的光(660和860 nm),可以沿着脚的表面在多达20个不同的位置进行照明。该系统专为动态成像而设计,能够以1 Hz的多光谱体积帧速率速度进行成像。这种设置使我们能够创建脚的大部分的三维图像。该成像系统已在幻像研究和健康志愿者身上进行了测试,并被证明能够对脚部三维空间内的血流动态进行成像。

著录项

  • 作者

    Khalil, Michael A.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Biomedical.;Health Sciences Radiology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号