首页> 外文学位 >16 inch composite material telescope with adaptive optics. Key components: Wavefront reconstructor and vibration testing.
【24h】

16 inch composite material telescope with adaptive optics. Key components: Wavefront reconstructor and vibration testing.

机译:具有自适应光学元件的16英寸复合材料望远镜。关键组件:波前重建器和振动测试。

获取原文
获取原文并翻译 | 示例

摘要

Advances in technology has provided means for astronomical optical telescopes to increase the aperture diameter (more light collecting capability) therefore increasing the resolution. Better resolution allows telescopes to observe more details and fainter objects. But an increase in diameter means an increase in optics size, which needs big and heavy structures to support them. New developments in composite materials have allowed Composite Mirror Application(CMA) in Tucson, Arizona to build a carbon fiber reinforced polymer(CFRP) telescope and optics for the Naval Research Laboratory(NRL), reducing significantly its weight. Other than weight, atmospheric turbulence is the other major problem for an increase in telescope resolution, but technologies such as adaptive optics(AO) can mitigate its effects. AO refers to systems which can adapt to compensate for effects introduced by the atmosphere or another medium. This thesis presents the results of two studies done on this next-generation telescope. First it presents work done on the development of two wavefront reconstructors for AO systems that the new telescope will use. The two reconstructors are based on Finite Difference(FD) and Finite Element(FE) methods, respectively. Second, work done on the characterization of the vibration behavior for this new type of composite material telescope is presented. Preliminary analysis of the data was performed using a new technique for analysing nonlinear systems, the Empirical Mode Decomposition(EMD). Data for both experiments was obtained from a 16 inch composite material telescope prototype and from a non-conventional AO system Shack-Hartmann wavefront sensor.
机译:技术的进步为天文光学望远镜提供了增加孔径的手段(更多的聚光能力),从而提高了分辨率。更好的分辨率使望远镜可以观察更多的细节和微弱的物体。但是直径的增加意味着光学器件尺寸的增加,这需要笨重的结构来支撑它们。复合材料的新发展使位于亚利桑那州图森的复合镜应用(CMA)可以为海军研究实验室(NRL)建造碳纤维增强聚合物(CFRP)望远镜和光学镜,从而大大减轻了其重量。除了重量以外,大气湍流是提高望远镜分辨率的另一个主要问题,但是诸如自适应光学(AO)等技术可以减轻其影响。 AO是指可以适应大气或其他介质引入的影响的系统。本文介绍了在这种下一代望远镜上进行的两项研究的结果。首先,它介绍了新望远镜将要使用的两个用于AO系统的波前重建器的开发工作。这两个重建器分别基于有限差分(FD)和有限元(FE)方法。其次,介绍了表征这种新型复合材料望远镜的振动行为的工作。使用一种用于分析非线性系统的新技术,即经验模态分解(EMD)对数据进行了初步分析。这两个实验的数据都是从16英寸复合材料望远镜原型和非常规AO系统Shack-Hartmann波前传感器获得的。

著录项

  • 作者

    Santiago, Freddie.;

  • 作者单位

    University of Puerto Rico, Mayaguez (Puerto Rico).;

  • 授予单位 University of Puerto Rico, Mayaguez (Puerto Rico).;
  • 学科 Engineering Mechanical.; Physics Astronomy and Astrophysics.; Physics Radiation.
  • 学位 M.S.
  • 年度 2007
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;天文学;原子核物理学、高能物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号