首页> 外文学位 >Design and implementation of metabolic networks for the improvement of product yields in cofactor-limiting systems in Escherichia coli.
【24h】

Design and implementation of metabolic networks for the improvement of product yields in cofactor-limiting systems in Escherichia coli.

机译:代谢网络的设计和实施,用于提高大肠杆菌辅因子限制系统中产品的收率。

获取原文
获取原文并翻译 | 示例

摘要

Metabolic engineering is the rational alteration of the genetic structure of an organism to make this organism achieve a desired goal. One important aspect of metabolic engineering is the manipulation of metabolic pathways in microorganisms to increase the yield and productivity of cofactor dependent products. When designing a metabolic network to maximize product formation from a substrate, it is crucial to take into consideration cofactor constraint and maintain a proper balance between yield and productivity.; The purpose of this study is to design and optimize a metabolic network to increase the yield and productivity of cofactor dependent products taking into consideration cofactor constraint.; The production of succinate, a valuable specialty chemical, was used as a model system to explore the effect of manipulating NADH in vivo as well as to study the effect of alleviating cofactor constraint through pathway engineering. Additionally the production of the biodegradable polymer poly-beta-hydroxybutyrate was used as a model system to explore the effect of manipulating NADPH availability in vivo.; Currently, the maximum theoretical succinate yield under strictly anaerobic conditions through the fermentative succinate biosynthesis pathway is limited to one mole per mole of glucose due to NADH limitation. In order to surpass the maximum anaerobic theoretical succinate yield from glucose, a genetically engineered E. coli strain was constructed to meet the NADH requirement and carbon demand to produce high quantities and yield of succinate. The implemented strategic design involves a dual succinate synthesis route, which diverts required quantities of NADH through the traditional fermentative pathway and maximizes the carbon converted to succinate by balancing the carbon flux through the fermentative pathway and the glyoxylate pathway (which has a lower NADH requirement). The implementation of this metabolic network to produce succinate in E. coli increases the succinate yield from glucose to 1.6 mol/mol with an average anaerobic productivity rate of 10 mM/h. The final strain demonstrated to be stable and robust in performance. Based on the proposed stoichiometric model, the experimental estimated metabolic fluxes of this strain were in excellent agreement with theoretical optimized fluxes (Cox et al. 2005).
机译:代谢工程是生物体遗传结构的合理改变,以使该生物体实现所需的目标。代谢工程的一个重要方面是操纵微生物中的代谢途径以增加辅因子依赖性产物的产量和生产率。当设计代谢网络以最大程度地从底物形成产物时,至关重要的是要考虑辅因子的约束并在产量和生产率之间保持适当的平衡。该研究的目的是设计和优化代谢网络,以考虑辅因子的约束来提高辅因子依赖性产品的产量和生产率。琥珀酸盐(一种有价值的特种化学品)的生产被用作模型系统,以研究体内操纵NADH的效果以及研究通过途径工程减轻辅因子约束的效果。另外,将可生物降解的聚合物聚-β-羟基丁酸酯的生产用作模型系统,以探索在体内操纵NADPH可用性的效果。目前,由于NADH的限制,在严格的厌氧条件下,通过发酵性琥珀酸酯生物合成途径的最大理论琥珀酸酯产量限制为每摩尔葡萄糖1摩尔。为了超过葡萄糖的最大厌氧琥珀酸理论产率,构建了基因工程的大肠杆菌菌株以满足NADH的要求和碳的需求,以生产大量和高产的琥珀酸。已实施的战略设计涉及双琥珀酸合成路线,该路线可通过传统发酵途径转移所需量的NADH,并通过平衡通过发酵途径和乙醛酸途径的碳通量(NADH需求较低)来最大化转化为琥珀酸的碳。 。该代谢网络在大肠杆菌中生产琥珀酸酯的实施将琥珀酸酯从葡萄糖的产率提高到1.6 mol / mol,平均厌氧生产率为10 mM / h。最终的应变证明是稳定且性能稳定的。根据建议的化学计量模型,该菌株的实验估计代谢通量与理论上最优化的通量非常吻合(Cox等,2005)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号