首页> 外文学位 >A mixed unsplit-field PML-based scheme for full waveform inversion in the time-domain using scalar waves.
【24h】

A mixed unsplit-field PML-based scheme for full waveform inversion in the time-domain using scalar waves.

机译:基于标量波的时域全波形反演的基于混合非分裂场PML的方案。

获取原文
获取原文并翻译 | 示例

摘要

We discuss a full-waveform based material profile reconstruction in two-dimensional heterogeneous semi-infinite domains. In particular, we try to image the spatial variation of shear moduli/wave velocities, directly in the time-domain, from scant surficial measurements of the domain's response to prescribed dynamic excitation. In addition, in one-dimensional media, we try to image the spatial variability of elastic and attenuation properties simultaneously.;To deal with the semi-infinite extent of the physical domains, we introduce truncation boundaries, and adopt perfectly-matched-layers (PMLs) as the boundary wave absorbers. Within this framework we develop a new mixed displacement-stress (or stress memory) finite element formulation based on unsplit-field PMLs for transient scalar wave simulations in heterogeneous semi-infinite domains. We use, as is typically done, complex-coordinate stretching transformations in the frequency-domain, and recover the governing PDEs in the time-domain through the inverse Fourier transform. Upon spatial discretization, the resulting equations lead to a mixed semi-discrete form, where both displacements and stresses (or stress histories/memories) are treated as independent unknowns. We propose approximant pairs, which numerically, are shown to be stable.;The resulting mixed finite element scheme is relatively simple and straightforward to implement, when compared against split-field PML techniques. It also bypasses the need for complicated time integration schemes that arise when recent displacement-based formulations are used. We report numerical results for 1D and 2D scalar wave propagation in semi-infinite domains truncated by PMLs. We also conduct parametric studies and report on the effect the various PML parameter choices have on the simulation error.;To tackle the inversion, we adopt a PDE-constrained optimization approach, that formally leads to a classic KKT (Karush-Kuhn-Tucker) system comprising an initial-value state, a final-value adjoint, and a time-invariant control problem. We iteratively update the velocity profile by solving the KKT system via a reduced space approach. To narrow the feasibility space and alleviate the inherent solution multiplicity of the inverse problem, Tikhonov and Total Variation (TV) regularization schemes are used, endowed with a regularization factor continuation algorithm. We use a source frequency continuation scheme to make successive iterates remain within the basin of attraction of the global minimum. We also limit the total observation time to optimally account for the domain's heterogeneity during inversion iterations.;We report on both one- and two-dimensional examples, including the Marmousi benchmark problem, that lead efficiently to the reconstruction of heterogeneous profiles involving both horizontal and inclined layers, as well as of inclusions within layered systems.
机译:我们讨论了二维异构半无限域中基于全波形的材料轮廓重构。特别是,我们尝试从时域的表面测量值不大到规定的动态激励,直接在时域中对剪切模量/波速的空间变化进行成像。此外,在一维介质中,我们尝试同时成像弹性和衰减特性的空间变异性。;为处理物理域的半无限范围,我们引入了截断边界,并采用了完全匹配的层( PML)作为边界波吸收体。在此框架内,我们开发了一种基于非分裂场PML的新的混合位移应力(或应力记忆)有限元公式,用于异构半无限域中的瞬态标量波仿真。通常,我们在频域中使用复数坐标拉伸变换,并通过逆傅立叶变换在时域中恢复控制PDE。在空间离散化之后,所得方程式将导致混合半离散形式,其中位移和应力(或应力历史/内存)都被视为独立的未知数。我们提出了近似对,在数值上被证明是稳定的。与混合场PML技术相比,所得的混合有限元方案相对简单易行。当使用最新的基于位移的公式时,它也避免了对复杂的时间积分方案的需求。我们报告了在PML截断的半无限域中一维和二维标量波传播的数值结果。我们还进行了参数研究,并报告了各种PML参数选择对模拟误差的影响。为了解决反演问题,我们采用了PDE约束的优化方法,正式形成了经典的KKT(Karush-Kuhn-Tucker)该系统包括初始值状态,最终值伴随项和时不变控制问题。我们通过减少空间的方法解决KKT系统来迭代更新速度分布。为了缩小可行性空间并减轻反问题的内在解多样性,使用了Tikhonov和Total Variation(TV)正则化方案,并赋予了正则化因子连续算法。我们使用源频率连续方案,以使连续的迭代保留在全局最小值的吸引域内。我们还限制了总观测时间,以最佳地考虑反演迭代过程中域的异质性。;我们报告了一维和二维示例,包括Marmousi基准问题,这些示例有效地导致了涉及水平方向和水平方向的异质剖面的重建倾斜的层以及分层系统中的夹杂物。

著录项

  • 作者

    Kang, Jun Won.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Applied Mechanics.;Geophysics.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 269 p.
  • 总页数 269
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号