首页> 外文学位 >Molecular beam studies of hyperthermal atomic oxygen and argon interactions with polymer surfaces and gas-phase molecules.
【24h】

Molecular beam studies of hyperthermal atomic oxygen and argon interactions with polymer surfaces and gas-phase molecules.

机译:分子束研究高温原子氧和氩与聚合物表面和气相分子的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

O atoms and N2 molecules in the outer atmosphere of the Earth collide with spacecraft surfaces and various gases that are released from space vehicles. The high relative velocity of the collisions promotes high reaction probability and large energy transfers, leading to materials degradation and chemiluminescent reactions, which may interfere with the mission of the vehicle. The work presented in this thesis uses sophisticated molecular beam and surface science techniques to study materials degradation and individual reactive and inelastic collisions in an effort to understand the complex chemistry and physics that are characteristic of space vehicle interactions with Earth's upper atmosphere. A new space-durable polymer, polyhedral oligomeric silsesquioxane polyimide, has been identified. When exposed to atomic oxygen, this polymer forms a protective SiO2 layer on its surface. Beam-surface scattering experiments showed that collision-induced dissociation becomes an important gas-surface process when the translational energy of the incident atom or molecule is greater than 8 eV. Experiments on the dynamics of gas-phase collisions at hyperthermal collision energies found that inelastic collisions may transfer large amounts of energy into internal degrees of freedom. The scattering dynamics of the reactive 16OC product from the 16O( 3P) + C18O → 16OC + 18O reaction were quite unexpected, with 16OC predominantly forward scattered. Experiments on the reactions of O( 3P) with H2O demonstrated the occurrence of a previously unobserved reaction pathway, O(3P) + H2O → HO2 + H, with a barrier determined to be ∼2.6 eV. These studies of hyperthermal processes with molecular beam techniques have enabled us to identify a promising new material and to understand the detailed collision dynamics in model gas-surface and gas-phase systems. In each case, the experiments have revealed new chemical or energy transfer processes that were not considered earlier. These previously unknown processes reveal trends in hyperthermal collisions that will undoubtedly be critical to the planning and design of missions that put space vehicles in contact with the outer reaches of the Earth's atmosphere.
机译:地球外部大气层中的O原子和N2分子与航天器表面以及从航天器释放的各种气体发生碰撞。较高的碰撞相对速度促进了较高的反应概率和较大的能量传递,从而导致材料降解和化学发光反应,可能会干扰车辆的运行。本文介绍的工作使用复杂的分子束和表面科学技术来研究材料的降解以及单个的反应性和非弹性碰撞,以了解复杂的化学和物理学,这些化学和物理学是航天器与地球高层大气相互作用的特征。已经确定了一种新型的空间耐用聚合物,即多面体低聚倍半硅氧烷聚酰亚胺。当暴露于原子氧时,该聚合物在其表面上形成保护性SiO2层。束表面散射实验表明,当入射原子或分子的平移能量大于8 eV时,碰撞诱导的离解成为重要的气体表面过程。在高温碰撞能量下进行气相碰撞动力学的实验发现,非弹性碰撞可能会将大量能量转移到内部自由度中。来自16O(3P)+ C18O→16OC + 18O反应的反应性16OC产物的散射动力学非常出乎意料,其中16OC主要向前散射。 O(3P)与H2O反应的实验表明,以前没有观察到的反应途径为O(3P)+ H2O→HO2 + H,其势垒确定为2.6 eV。这些对利用分子束技术进行的高温过程的研究使我们能够确定一种有前途的新材料,并了解模型气体表面和气相系统中详细的碰撞动力学。在每种情况下,实验都揭示了较早未曾考虑过的新化学或能量转移过程。这些先前未知的过程揭示了高温碰撞的趋势,这无疑对使航天器与地球大气层接触的飞行任务的计划和设计至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号