首页> 外文学位 >Soft glassy rheology and structure of colloidal gels.
【24h】

Soft glassy rheology and structure of colloidal gels.

机译:柔软的玻璃状流变性和胶体结构。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we compare rheology of thermoreversible colloidal silica gels with predictions of the soft glassy rheology (SGR) model. We characterize the structure, configuration and local bond rigidity of fractal colloidal gels. A method for preparation of anisotropic particles is also presented. The principal findings are summarized below.; We compare rheological properties of dense thermoreversible silica gels (&phis;=20%) with predictions of the SGR model. Linear rheology and the steady-state rheological responses of the silica gels are in agreement with the SGR model. However, we find significant disagreement between the SGR model prediction of the step strain response and the experimental determination of the damping function, particularly for step strains greater than ten times the yield strain. The noise temperature extracted from the linear rheological data is 1.05+/-0.01, indicating that colloidal gels are not glasses.; We directly visualize the microstructure of dilute fractal colloidal gels (&phis;=0.5%) to characterize their local configuration and bond rigidity. Two classes of fractal gels are studied. Radial distribution function, contact number distribution and common-neighbor analysis are calculated. We identify the backbone of gel networks and calculate the backbone fractal dimension and the relative number of particles in the backbone. We establish a simple measure of local bond rigidity based on the prevalence of load bearing triangle structures in the fractal gel network. We find significant difference in these measures between the two classes of fractal gels.; We report a method to prepare anisotropic particles with one hemisphere fluorescent, based on the recently reported gel trapping technique of Paunov and Cayre (Advanced Materials, 16 778 2004). We immobilize carboxylic modified polystyrene particles at the surface of a polydimethylsiloxane film and utilize an amine-carboxylic covalent coupling reaction to dye one hemisphere of the particles. We collect the half-trapped particles by either degrading the film with isopropanol and NaOCH3 or removing the trapped spheres by adhering them to water-soluble tape. The anisotropy of the particles is confirmed with Scanning Electron Microscopy and confocal microscopy.
机译:在本文中,我们将热可逆胶体硅胶的流变学与软玻璃流变学(SGR)模型的预测进行了比较。我们表征了分形胶体凝胶的结构,构型和局部结合刚性。还提出了制备各向异性颗粒的方法。主要发现总结如下。我们将稠密的热可逆硅胶(φ= 20%)的流变特性与SGR模型的预测值进行了比较。硅胶的线性流变学和稳态流变学响应与SGR模型一致。但是,我们发现阶跃应变响应的SGR模型预测与阻尼函数的实验确定之间存在重大分歧,尤其是对于大于屈服应变十倍的阶跃应变而言。从线性流变数据中提取的噪声温度为1.05 +/- 0.01,表明胶体凝胶不是玻璃。我们直接可视化稀释的分形胶体凝胶(φ= 0.5%)的微观结构,以表征其局部构型和结合刚度。研究了两类分形凝胶。计算了径向分布函数,接触数分布和公共邻域分析。我们确定凝胶网络的骨架,并计算骨架的分形维数和骨架中颗粒的相对数量。我们基于分形凝胶网络中承载三角结构的普遍性,建立了一种简单的局部粘结刚度测量方法。我们发现这两类分形凝胶在这些测量方法上有显着差异。我们报告了一种方法,它基于最近报道的Paunov和Cayre凝胶捕获技术(Advanced Materials,16 778 2004),用一个半球荧光制备各向异性粒子。我们将羧酸改性的聚苯乙烯颗粒固定在聚二甲基硅氧烷膜的表面,并利用胺-羧基共价偶联反应对颗粒的一个半球进行染色。我们通过用异丙醇和NaOCH3降解膜或通过将捕获的球粘附到水溶性胶带上来去除捕获的球来收集被捕获的一半粒子。颗粒的各向异性通过扫描电子显微镜和共聚焦显微镜确认。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号