首页> 外文学位 >Pollutants transformation in saline sewage sewer- Experimental investigation, process study and model development.
【24h】

Pollutants transformation in saline sewage sewer- Experimental investigation, process study and model development.

机译:盐水污水管道中的污染物转化-实验研究,过程研究和模型开发。

获取原文
获取原文并翻译 | 示例

摘要

In Hong Kong, seawater is used in most of the flush toilets. This results in the production of high concentrations of hydrogen sulfide in the saline sewage sewers which leads to serious corrosions of the sewer pipes. To tackle this problem, nitrate dosing is a method practiced in the Tung Chung area currently.;Since chemical dosing involves large amounts of human and financial resources, a cost-effective dosing approach should always be sought and the optimal dosage of chemicals required should be determined. However, with the constraints of site investigations and the complexities of sewer pollutant transformation processes, it would be difficult to obtain the optimal dosing amount of nitrate for the best control of hydrogen sulfide emission. Therefore an effective sewer process model would be useful for the prediction of sulfate and nitrate pollutant transformations in the saline sewage sewers. Furthermore, this model should also be able to evaluate the organic removal capacity of a gravity sewer as an interim solution to water pollution control in rural areas where no sewage treatment facilities are available.;Although a number of sewer process models were proposed in the last 15 years, most of them overlooked the role of sewer biofilm and none of them explored the salinity effect and the sulfate reducing reaction. With these in mind, we developed a new and comprehensive sewer process model to fully describe various pollutants transformations in a saline sewage sewer. In order to achieve this goal, we conducted a series of studies over the last seven years, including: (1) the investigation of sewage quality transformation in a full-scale saline sewage sewer, (2) the study of sewer biofilm population, structure and bio-kinetics, (3) the development of mathematical models for the predictions of sulfate, nitrate, and organic matter transformations in both sewage and biofilm phases, as well as in the entire sewer system, (4) the verification of the proposed mathematical biofilm model using spatial profiles of various pollutant concentrations within the sewer biofilm, measured by relevant microelectrodes, (5) the verification of the proposed sewer process model with full-scale sewer measurements, and (6) the application of the proposed sewer process model to the real saline sewage sewer in the Tung Chung area for the control of hydrogen sulfide production.;The main conclusions of this study can be drawn as follows: (1) A dynamic one-dimensional model for the sewage phase of the pollutants transformation was proposed, with consideration of sewer hydraulics, pollutants transport, dispersion, re-aeration and microbial transformations. This model accurately simulated the sewage quality transformation in the sewage phase of a saline sewage sewer. (2) The microbial transformation bio-kinetics in the sewer were developed from both theoretical and experimental studies. A new method was developed for simultaneous determination of various parameters in the bio-kinetics. These parameter values were based on limited batch experimental data. (3) A dynamic sewer biofilm process model was proposed. It included biofilm attachment and detachment, substrate diffusion and microbial transformation in the biofilm of a saline sewage sewer. This new model not only simulated sulfate reduction, sulfide oxidation, denitrification, and organic degradation, but also dealt with the variations of biofilm thickness and density in a real sewer. (4) Various verification approaches for the proposed sewer biofilm model were attempted, including comparisons between model predictions and measurements of biofilm thickness and density; comparisons between model predictions and spatial profiles of H2S, NH4-N, O2, NO X-N within the biofilm using relevant microelectrodes; and comparisons between model prediction and spatial profile of sulfate reducing bacteria (SRB) within the biofilm using specific gene probe. All these comparisons verified the proposed sewer biofilm model successfully. (5) A saline sewage sewer quality transformation process model was developed by integrating the sewage phase model and the biofilm model. This new sewer process model was verified by the measurements of the variation of dissolved oxygen concentration in a full-scale saline sewage gravity sewer. (6) The sewer process model was applied to a real sewer in Tung Chung. The simulation showed that the optimal dosage of nitrate for the control of hydrogen sulfide production was 84 g-N m-3 under a continuous dosing condition.;Key Words: Saline sewage; sewer biofilm; sewage quality transformation; model development and verification; hydrogen sulfide control.
机译:在香港,大部分抽水马桶都使用海水。这导致在盐水污水管道中产生高浓度的硫化氢,这导致污水管道严重腐蚀。为了解决这个问题,目前在东涌地区已开始采用硝酸盐计量。由于化学计量涉及大量的人力和财力,因此应始终寻求具有成本效益的计量方法,并应确定所需的最佳化学剂量。决心。但是,由于现场调查的限制和下水道污染物转化过程的复杂性,很难获得最佳的硝酸盐定量添加量,以最佳地控制硫化氢的排放。因此,有效的污水处理过程模型将有助于预测盐水污水管道中硫酸盐和硝酸盐污染物的转化。此外,该模型还应该能够评估重力下水道的有机去除能力,作为在没有污水处理设施的农村地区控制水污染的临时解决方案。尽管最近提出了许多下水道处理模型15年来,他们大多数都忽略了下水道生物膜的作用,而且都没有探讨盐度效应和硫酸盐还原反应。考虑到这些,我们开发了一个新的,全面的下水道处理模型,以全面描述盐水污水处理厂中各种污染物的转化。为了实现这一目标,我们在过去的七年中进行了一系列研究,其中包括:(1)对大型盐水污水处理厂的污水质量转化进行调查,(2)研究污水生物膜的种群,结构和生物动力学,(3)用于预测污水和生物膜相以及整个下水道系统中硫酸盐,硝酸盐和有机物转化的数学模型的开发,(4)验证所提出的数学模型利用相关微电极对下水道生物膜内各种污染物浓度的空间分布进行生物膜模型研究,(5)用全尺寸下水道测量对拟议的下水道过程模型进行验证,以及(6)将下水道过程模型应用于该研究的主要结论可归纳为:(1)一个动态的一维模型,用于控制硫化氢的产生。提出了污染物转化的污水阶段,并考虑了下水道的水力,污染物的运输,扩散,再曝气和微生物转化。该模型精确模拟了盐水排污管污水阶段的污水质量转换。 (2)从理论和实验研究两个方面发展了下水道中微生物转化的生物动力学。开发了一种同时测定生物动力学中各种参数的新方法。这些参数值基于有限的批实验数据。 (3)提出了动态下水道生物膜过程模型。它包括盐水污水渠的生物膜中生物膜的附着和分离,基质扩散和微生物转化。这个新模型不仅模拟了硫酸盐的还原,硫化物的氧化,反硝化和有机降解,而且还处理了真实下水道中生物膜厚度和密度的变化。 (4)尝试对提出的下水道生物膜模型进行各种验证方法,包括模型预测与生物膜厚度和密度测量之间的比较;使用相关的微电极比较生物膜中H2S,NH4-N,O2,NO X-N的模型预测与空间分布之间的比较;以及使用特定基因探针的生物膜中硫酸盐还原细菌(SRB)的模型预测与空间分布之间的比较。所有这些比较成功地验证了所建议的下水道生物膜模型。 (5)结合污水相模型和生物膜模型,建立了盐水污水下水质量转化过程模型。该新的下水道处理模型通过测量全尺寸盐水污水重力下水道中溶解氧浓度的变化得到了验证。 (6)下水道过程模型被应用于东涌的一个真实的下水道。模拟结果表明,在连续投加条件下,控制硫化氢生产的硝酸盐最佳用量为84 g-N m-3。下水道生物膜;污水质量改造;模型开发和验证;硫化氢控制。

著录项

  • 作者

    Leung, Derek Ho Wai.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Engineering Civil.;Engineering Sanitary and Municipal.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号