首页> 外文学位 >Self-assembly of silica nanoparticles and their role in the mechanism of silicalite-1 crystallization.
【24h】

Self-assembly of silica nanoparticles and their role in the mechanism of silicalite-1 crystallization.

机译:二氧化硅纳米粒子的自组装及其在silicalite-1结晶机理中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Developing new, nanostructured materials for emerging applications in areas ranging from energy to pharmaceuticals largely involves self-assembly, and often requires syntheses of materials at small length scales with exact precision in physical properties (e.g., size, morphology). Rational design of materials, such as zeolites, requires knowledge of their mechanism(s) of formation; and thus, the overarching motivation for this thesis was to develop a molecular-level understanding of the processes involved in zeolite crystallization. To this end, we have focused on the all-silica zeolite, silicalite-1, which is synthesized in basic aqueous solutions of silica and an organic structure-directing agent, the tetrapropylammonium (TPA+) ion. Molecular precursors result in the spontaneous formation of stable, silica nanoparticles (1--6 nm) that serve as potential building units in both nucleation and growth of silicalite-1.; In this thesis, we employ a hierarchical approach involving analyses along multiple length scales, using combined experiments and modeling to: (i) elucidate the driving force(s) leading to nanoparticle self-assembly, (ii) experimentally assess the energetic contributions to their colloidal stability in solution, (iii) quantify nanoparticle composition and molecular structure, (iv) identify changes in nanoparticle properties with heat treatment (i.e., initial stages of nucleation), (v) probe relevant time scales involved in viable growth and dissolution pathways, (vi) develop combined kinetic and silicate speciation models to predict both growth and dissolution, and (vii) evaluate hypotheses in the literature regarding nanoparticle structure and its role in the mechanism of silicalite-1 crystallization.; Nanoparticle self-assembly is investigated through a combination of pH, conductivity, small-angle scattering, and microcalorimetric measurements. We developed a chemical equilibrium model, based on silica condensation and silanol dissociation, capable of predicting established phase behavior of silica nanoparticles along with their critical aggregation concentration (CAC). This model calculates higher surface charge for nanoparticles compared to those for zeolite, suggesting that electrostatics are largely responsible for the colloidal stability of precursors. In addition, the model offers explanations for thermodynamic phenomena associated with nanoparticle self-assembly and silicalite-1 crystallization (e.g., the observed exothermic-endothermic transition near synthesis completion).; Silica nanoparticles possess a core-shell structure comprised of a hydrated silica core surrounded by a shell of adsorbed cation (e.g., TPA+). We analyze cation effects by substituting TPA+ with other tetraalkylammonium ions and alkali metals. The self-assembly (i.e., CAC) and growth of nanoparticles is nearly independent of the cation, while organic ions imparts a steric stabilization that increases the nanoparticle resistance to coagulate. We also use a combination of small-angle X-ray and neutron scattering (SAXS and SANS) and microcalorimetric measurements to elucidate the composition and molecular structure of silica nanoparticles. Analyses are performed on both as synthesized and heat-treated particles. The latter are shown to evolve by an Ostwald ripening process, whereby a fraction of the nanoparticles grows at the expense of others that dissolve over time. During this evolution, the overall composition (e.g., scattering length density, Si/TPA+ molar ratio) changes from a material that is initially amorphous-like to one that is closer to that of silicalite-1.; Nanoparticle and silicalite-1 dissolution rates are measured at varying reaction conditions, and are compared to those of other silicates, showing two distinct features: (i) dissolution rates and enthalpies of reaction can be used to compare, or identify, the molecular structure of silicates, and (ii) nanoparticles are initially disordered, but exhibit an internal reori
机译:开发新的,纳米结构的材料以用于从能源到制药等领域的新兴应用在很大程度上涉及自组装,并且通常需要以小长度尺度合成具有物理特性(例如尺寸,形态)精确的材料。材料(例如沸石)的合理设计需要了解其形成机理;因此,本文的主要动机是对分子筛结晶过程的分子水平有了更深入的了解。为此,我们专注于全二氧化硅沸石,silicalite-1,它是在二氧化硅和有机结构导向剂四丙基铵(TPA +)离子的碱性水溶液中合成的。分子前体导致自发形成稳定的二氧化硅纳米粒子(1--6 nm),这些分子在silicalite-1的成核和生长中均是潜在的构建单元。在本文中,我们采用了一种分层方法,该方法涉及多个长度尺度的分析,并使用组合的实验和建模方法:(i)阐明导致纳米粒子自组装的驱动力;(ii)通过实验评估其对其产生的能量贡献溶液中的胶体稳定性;(iii)量化纳米粒子的组成和分子结构,(iv)通过热处理(即成核的初始阶段)识别纳米粒子特性的变化,(v)探查可行的生长和溶解途径所涉及的相关时间尺度, (vi)建立动力学和硅酸盐形态组合模型以预测生长和溶解,以及(vii)评估文献中有关纳米颗粒结构及其在silicalite-1结晶机理中的作用的假设。纳米粒子的自组装是通过结合pH,电导率,小角度散射和微量量热法进行研究的。我们基于二氧化硅的缩合和硅烷醇解离建立了一个化学平衡模型,该模型能够预测二氧化硅纳米颗粒及其临界聚集浓度(CAC)的已建立相行为。该模型计算出的纳米颗粒的表面电荷高于沸石的表面电荷,表明静电在很大程度上负责前体的胶体稳定性。另外,该模型提供了与纳米粒子自组装和silicalite-1结晶相关的热力学现象的解释(例如,在合成完成后观察到的放热-吸热转变)。二氧化硅纳米颗粒具有核-壳结构,其由被吸附的阳离子(例如TPA +)的壳包围的水合二氧化硅核组成。我们通过用其他四烷基铵离子和碱金属取代TPA +来分析阳离子效应。纳米颗粒的自组装(即,CAC)和生长几乎与阳离子无关,而有机离子赋予空间稳定性,这增加了纳米颗粒的抗凝性。我们还结合使用小角度X射线和中子散射(SAXS和SANS)以及微量量热法来阐明二氧化硅纳米颗粒的组成和分子结构。对合成颗粒和热处理颗粒均进行分析。后者被证明是通过奥斯特瓦尔德(Ostwald)熟化过程而演化的,其中一部分纳米颗粒会以其他纳米颗粒随着时间的溶解为代价而生长。在这种演变过程中,总的组成(例如,散射长度密度,Si / TPA +摩尔比)从最初是无定形的材料变为更接近于silicalite-1的材料。在不同的反应条件下测量纳米颗粒和silicalite-1的溶解速率,并将其与其他硅酸盐的溶解速率进行比较,显示出两个明显的特征:(i)溶解速率和反应焓可用于比较或鉴定分子筛的分子结构。硅酸盐和(ii)纳米粒子起初是无序的,但表现出内部重排

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号