首页> 外文学位 >Reacting flow studies in a dump combustor: Enhanced volumetric heat release rates and flame anchorability.
【24h】

Reacting flow studies in a dump combustor: Enhanced volumetric heat release rates and flame anchorability.

机译:排空燃烧室中的反应流研究:增强的体积放热速率和火焰固定性。

获取原文
获取原文并翻译 | 示例

摘要

Reacting flow studies in a novel dump combustor facility focused on increasing volumetric heat release rates, under stable burning conditions, and understanding the physical mechanisms governing flame anchoring in an effort to extend range and maneuverability of compact, low drag, air-breathing engines. Countercurrent shear flow was enhanced within the combustor as the primary control variable. Experiments were performed burning premixed JP10/air and methane/air in a dump combustor using reacting flow particle image velocimetry (PIV) and chemiluminescence as the primary diagnostics.; Stable combustion studies burning lean mixtures of JP10/air aimed to increase volumetric heat release rates through the implementation of countercurrent shear control. Countercurrent shear flow was produced by creating a suction flow from a low pressure cavity connected to the dump combustor via a gap directly below the trailing edge. Chemiluminescence measurements showed that enhancing countercurrent shear within the combustor doubles volumetric heat release rates. PIV measurements indicate that counterflow acts to increase turbulent kinetic energy while maintaining constant strain rates. This acts to increase flame surface area through flame wrinkling without disrupting the integrity of the flame.; Flame anchorability is one of the most important fundamental aspects to understand when trying to enhance turbulent combustion in a high-speed engine without increasing drag. Studies burning methane/air mixtures used reacting flow PIV to study flame anchoring.; The operating point with the most stable flame anchor exhibited a correspondingly strong enthalpy flux of products into reactants via a single coherent structure positioned downstream of the step. However, the feature producing a strong flame anchor, i.e. a single coherent structure, also is responsible for combustion instabilities, therefore making this operating point undesirable. Counterflow control was found to create the best flow features for stable, robust, compact combustion. Enhancing countercurrent shear flow within a dump combustor enhances burning rates, provides a consistent pump of reaction-initiating combustion products required for sustained combustion, while maintaining flow three dimensionality needed to disrupt combustion instabilities. Future studies will focus on geometric and control scenarios that further reduce drag penalties while creating these same flow features found with countercurrent shear thus producing robust operating points.
机译:在新型的转储式燃烧器中进行的反流研究重点在于在稳定的燃烧条件下提高体积放热率,并了解控制火焰锚定的物理机制,以扩大紧凑,低阻力,空气呼吸发动机的范围和可操纵性。作为主要控制变量,在燃烧室内增强了逆流剪切流。使用反应流颗粒图像测速(PIV)和化学发光作为主要诊断方法,在转储燃烧器中燃烧JP10 /空气和甲烷/空气的预混物进行了实验。稳定的燃烧研究燃烧JP10 /空气的稀薄混合物,旨在通过实施逆流剪切控制来提高体积放热速率。逆流剪切流是通过从低压腔中产生的吸流产生的,该低压腔通过后缘正下方的间隙与卸料燃烧器相连。化学发光测量表明,增强燃烧室中的逆流剪切可使体积放热速率增加一倍。 PIV测量表明,逆流可在保持恒定应变率的同时增加湍流动能。通过起皱纹增加火焰表面积,而不破坏火焰的完整性。当试图在不增加阻力的情况下增强高速发动机中的湍流燃烧时,火焰的可锚定性是最重要的基本方面之一。研究燃烧的甲烷/空气混合物,使之与流动PIV反应以研究火焰锚定。具有最稳定的火焰锚点的工作点通过位于步骤下游的单个相干结构,表现出相应强的产物进入反应物的焓通量。然而,产生坚固的火焰锚的特征,即单个连贯结构,也造成燃烧不稳定性,因此使该工作点不合需要。发现逆流控制可创造出最佳的流动特性,以实现稳定,强劲,紧凑的燃烧。增强排料燃烧室中的逆流剪切流可提高燃烧速率,为持续燃烧所需的反应引发燃烧产物提供稳定的泵,同时保持破坏燃烧不稳定性所需的三维流。未来的研究将集中在几何和控制场景上,这些场景将进一步减少阻力损失,同时创建逆流剪切产生的相同流动特征,从而产生可靠的工作点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号