首页> 外文学位 >Formation design and nonlinear control of spacecraft formation flying.
【24h】

Formation design and nonlinear control of spacecraft formation flying.

机译:航天器编队飞行的编队设计和非线性控制。

获取原文
获取原文并翻译 | 示例

摘要

The fundamental control challenges associated with Spacecraft Formation Flying (SFF) can be classified into two categories: (i) trajectory design and (ii) trajectory tracking. In this research, we address these challenges for several different operating environments.; The first part of this research focuses on providing a trajectory generation and an adaptive control design methodology to facilitate SFF missions near the Sun-Earth L2 Lagrange point. Specifically, we create a spacecraft formation by placing a leader spacecraft on a desired Halo orbit and a follower spacecraft on a desired quasi-periodic orbit surrounding the Halo orbit. We develop the nonlinear dynamics of the leader spacecraft and the follower spacecraft relative to the leader spacecraft, wherein the leader spacecraft is assumed to be on a desired Halo orbit trajectory. Finally, we design formation maintenance controllers such that the leader and follower spacecraft track desired trajectories. In particular, we design a set of adaptive position tracking controllers for the leader and follower spacecraft in the presence of unknown spacecraft mass. The proposed control laws are simulated for the case of the leader and follower spacecraft pair and are shown to yield asymptotic convergence of the position tracking errors.; The second part of this research focuses on providing nonlinear trajectory tracking control designs for SFF missions near Earth. First, we address output feedback tracking control problems for the coupled translation and attitude motion of a leader and a follower spacecraft. It is assumed that the translation and angular velocity measurements of the two spacecraft are not available for feedback. Second, we address a periodic trajectory tracking problem arising in spacecraft formation flying. In particular, the nonlinear position dynamics of a follower spacecraft relative to a leader spacecraft are utilized to develop a learning controller which learns a periodic, unknown model reference control. Using a Lyapunov-based approach, a full state feedback control law, a parameter update algorithm, and a model reference control estimate are designed that facilitate the tracking of given periodic reference trajectories in the presence of unknown leader and follower spacecraft masses. Furthermore, using a discrete Lyapunov-type stability analysis, model reference control error is shown to converge to zero. Illustrative simulations are included to demonstrate the efficacy of the proposed controllers.; The third part of this research explores the feasibility of using the effects of J2 perturbations as a mechanism to deploy pico-satellites (e.g., cubesats) to create a spacecraft constellation. Specifically, using two deployer spacecraft, both moving on polar Earth orbits, we insert one hundred cubesats into sparsely populated 60 degree inclination orbits around the Earth using a change in orbital inclination only. We also outline a proof-of-concept single stage propulsion system that provides necessary propulsive input for the velocity change needed for the orbital inclination change of cubesats. A series of illustrative simulations are given to demonstrate that sufficient and effective coverage of the Earth is achieved using the designed cubesat constellation. (Abstract shortened by UMI.)
机译:与航天器编队飞行(SFF)相关的基本控制挑战可分为两类:(i)轨迹设计和(ii)轨迹跟踪。在这项研究中,我们针对几种不同的操作环境解决了这些挑战。本研究的第一部分着重于提供轨迹生成和自适应控制设计方法,以促进日地L2拉格朗日点附近的SFF任务。具体而言,我们通过将领导者航天器放置在所需的Halo轨道上并将跟随者航天器放置在所需的围绕Halo轨道的准周期轨道上来创建航天器编队。我们开发了相对于前导航天器的前导航天器和从动航天器的非线性动力学,其中前导航天器被假定在所需的Halo轨道上。最后,我们设计了编队维护控制器,以使前导和跟随航天器跟踪所需的轨迹。特别是,在存在未知航天器质量的情况下,我们为领导者和跟随者航天器设计了一组自适应位置跟踪控制器。拟议的控制律是针对前导和从属航天器对的情况进行仿真的,并显示出了位置跟踪误差的渐近收敛性。本研究的第二部分重点在于为靠近地球的SFF任务提供非线性轨迹跟踪控制设计。首先,我们针对领导者和跟随者航天器的平移和姿态运动耦合输出反馈跟踪控制问题。假定这两个航天器的平移和角速度测量不可用于反馈。其次,我们解决了航天器编队飞行中出现的周期性轨迹跟踪问题。特别地,从动航天器相对于领导航天器的非线性位置动力学被用来开发学习控制器,该控制器学习周期性的未知模型参考控制。使用基于李雅普诺夫的方法,设计了一种全状态反馈控制律,参数更新算法和模型参考控制估计,这些模型有助于在存在未知前导和跟随航天器质量的情况下跟踪给定的周期性参考轨迹。此外,使用离散Lyapunov型稳定性分析,模型参考控制误差显示为收敛于零。说明性的仿真包括在内以证明所提出的控制器的功效。这项研究的第三部分探讨了使用J2扰动的影响作为部署微卫星(例如立方体卫星)以创建航天器星座的机制的可行性。具体来说,我们使用两个都在极地轨道上移动的部署航天器,仅通过改变轨道倾角就将一百个立方体卫星插入到人口稀少的地球60度倾斜轨道中。我们还概述了一种概念验证的单级推进系统,该系统可为立方卫星的轨道倾角变化所需的速度变化提供必要的推进输入。给出了一系列说明性模拟,以证明使用设计的cubesat星座可以实现足够有效的地球覆盖。 (摘要由UMI缩短。)

著录项

  • 作者

    Wong, Hong.;

  • 作者单位

    Polytechnic University.;

  • 授予单位 Polytechnic University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号