首页> 外文学位 >Inverse problems in non-destructive evaluation of gas transmission pipelines using magnetic flux leakage.
【24h】

Inverse problems in non-destructive evaluation of gas transmission pipelines using magnetic flux leakage.

机译:利用磁通量泄漏对输气管道进行无损评估的反问题。

获取原文
获取原文并翻译 | 示例

摘要

The critical issue in non-destructive evaluation (NDE) is the characterization of materials on the basis of information derived from the response of energy-material interactions without affecting the quality or utility of the test piece. This is commonly referred to as an "inverse problem". Inverse problems are in general ill-posed and full analytical solutions to these problems are seldom tractable. Practical solutions however employ constrained search techniques to find the optimal solution from the set of possible solutions. NDE signals recorded by the sensors are influenced not only by internal defects and degradations, but they also tend to be marred by the noise originating from various sources. Hence inverse problems in NDE need to deal with filtering techniques to obtain a noise-free signal. In this dissertation, NDE of natural gas transmission pipelines is considered.; Natural gas is transported to consumer sites through a vast network of pipelines. In order to ensure integrity of the system, the pipelines are periodically examined using Magnetic flux leakage (MFL) technique. The MFL inspection assembly is commonly referred to as "pig". In the MFL inspection tool, permanent or electromagnets are used to magnetize the pipe-wall in an axial direction and an array of Hall-effect sensors is usually installed around the circumference of the pig to sense the leakage flux caused by anomalies in the pipe-wall. The signal picked up by the sensor array is recorded and subsequently analyzed by trained analysts. Traditional methods involving manual analysis of this signal are time consuming. The performance of these methods cannot be standardized and is subject to change depending on the levels of skill and training of the analyst. The gas pipeline industry is therefore interested in automated methods for analyzing the MFL inspection signal in order to improve accuracy and decrease the turn around time between the actual pigging and receipt of inspection results.; MFL signals obtained from the pig are contaminated with noise from various sources. The variation in magnetic properties of seamless pipes introduces a quasi-periodic noise called as seamless pipe noise (SPN). Lift-off variations in sensors due to motion of pig inside the pipe and noise from electronic system hardware contribute to additional noise in the signal. Hence signal interpretation is carried out in two steps: (1) Noise removal and identification of regions of interest (ROIs) enclosing potential defects. (2) Inversion of the signal in the ROI to predict full 3-dimensional depth profile. This dissertation discusses the conventional methods of noise removal and their limitations when applied to the MFL signal. A new method based on higher order statistics (HOS) is introduced and described; its advantages over conventional methods are discussed.; Two approaches, namely direct and iterative inversion methods are presented in the second step of inverting the MFL signal to predict the defect depth profile. Both methods are based on the use of radial basis function neural network (RBFNN).; The challenge of high dimensionality (of the order of few thousands) is addressed by modifying traditional approaches described in literature. These modifications in both direct inversion as well as iterative inversion are new contributions to the field.
机译:非破坏性评估(NDE)中的关键问题是,在根据能量与材料相互作用的响应得出的信息的基础上,对材料进行表征,而不影响试件的质量或实用性。这通常称为“反问题”。反问题通常是不适当的,对这些问题的完整分析解决方案很难解决。但是,实际的解决方案采用受约束的搜索技术从可能的解决方案集中找到最佳解决方案。传感器记录的NDE信号不仅受内部缺陷和劣化的影响,而且还容易受到来自各种来源的噪声的损害。因此,NDE中的反问题需要处理滤波技术以获得无噪声的信号。本文考虑了天然气输送管道的无损检测。天然气通过庞大的管道网络输送到消费场所。为了确保系统的完整性,使用磁通量泄漏(MFL)技术定期检查管道。 MFL检查组件通常称为“猪”。在MFL检查工具中,永磁体或电磁体用于沿轴向磁化管壁,通常在清管器周围安装一系列霍尔效应传感器,以感测由管道异常引起的泄漏通量。壁。记录传感器阵列拾取的信号,然后由训练有素的分析人员进行分析。涉及手动分析此信号的传统方法非常耗时。这些方法的性能无法标准化,并且会根据分析人员的技能水平和培训水平而有所变化。因此,天然气管道行业对用于分析MFL检查信号的自动化方法感兴趣,以提高准确性并减少实际清管和接收检查结果之间的周转时间。从猪获得的MFL信号被各种来源的噪声污染。无缝管的磁性能变化会引入称为无缝管噪声(SPN)的准周期噪声。由于管道内部清管器的运动和电子系统硬件产生的噪声,传感器的升起变化会导致信号中的其他噪声。因此,信号解释分两个步骤进行:(1)去除噪声并识别包含潜在缺陷的感兴趣区域(ROI)。 (2)ROI中的信号反转以预测完整的3维深度轮廓。本文讨论了常规的去噪方法及其应用于MFL信号时的局限性。介绍并描述了一种基于高阶统计量的新方法。讨论了它比常规方法的优势。在将MFL信号反相以预测缺陷深度轮廓的第二步中,提出了两种方法,即直接和迭代反相方法。两种方法都基于径向基函数神经网络(RBFNN)的使用。通过修改文献中描述的传统方法,可以解决高维度(几千量级)的挑战。在直接反演和迭代反演中的这些修改是对该领域的新贡献。

著录项

  • 作者

    Joshi, Ameet Vijay.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 89 p.
  • 总页数 89
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号