首页> 外文学位 >The processing and characterization of porous nickel/YSZ and nickel oxide/YSZ composites used in solid oxide fuel cell applications.
【24h】

The processing and characterization of porous nickel/YSZ and nickel oxide/YSZ composites used in solid oxide fuel cell applications.

机译:固体氧化物燃料电池应用中使用的多孔镍/ YSZ和氧化镍/ YSZ复合材料的加工和表征。

获取原文
获取原文并翻译 | 示例

摘要

A solid oxide fuel cell (SOFC) is an energy conversion device that has the potential to efficiently generate electricity in an environmentally-friendly manner. In general, a SOFC operates between 750°C and 1000°C utilizing hydrogen or hydrocarbons as fuel and air as an oxidant. The three major components comprising a fuel cell are the electrolyte, the cathode, and the anode. At present, the state-of-the-art SOFC is made from a dense yttria-stabilized zirconia (YSZ) electrolyte, a porous lanthanum manganite cathode, and a porous nickel/YSZ composite anode. With the advent of the anode-supported SOFC and the increased interest in using a wider range of fuels, such as those containing sulphur, knowledge of the anode properties is becoming more important.; The properties of the current anodes are limited due to the narrow range of nickel loadings imposed by the minimum nickel content for electrical conductivity and the maximum allowable nickel loading to avoid thermal mismatch with the YSZ electrolyte. In addition, there is little research presented in the literature regarding the use of nickel metal as a starting anode material, rather than the traditional nickel oxide powder, and how porosity may affect the anode properties.; The purpose of this investigation is to determine the influence nickel morphology and porosity distribution have on the processing and properties of tape cast Ni/YSZ composites. Specifically, the sintering characteristics, electrical conductivity, and thermal expansion behaviour of tape cast composites created from YSZ, nickel, nickel oxide (NiO), nickel coated graphite (NiGr), and/or graphite (Gr) powders are investigated. In addition to samples made from 100% YSZ, 100% Ni, and 100% NiO powders, five composite types were created for this investigation: NiO/YSZ, NiO&Gr/YSZ, Ni/YSZ, NiGr/YSZ, and Ni&Gr/YSZ each with nickel loadings varying between 4 vol% Ni of total solids and 77 vol% Ni of total solids. Another set of composites with a fixed nickel loading of 27 vol% Ni and 47 vol% Ni of total solids and varying graphite loadings were also created.; During the burnout stage, the composites made from nickel oxide powder shrink slightly while the composites made from nickel metal expand due to nickel oxidation. Graphite additions below 20 vol% of the green volume do not alter the dimensional changes of the composites during burnout, but graphite loadings greater than 25 vol% of the green volume cause significant expansion in the thickness of the composites.; After sintering, the amount of volumetric sintering shrinkage decreases with higher nickel loadings and is greater for the composites made with nickel oxide compared to the composites made from nickel metal. The porosity generated in the composites containing graphite is slightly higher than the volume of graphite added to the composite and is much greater than the porosity contained in the graphite-free composites.; Dimensional changes of the porous Ni/YSZ and NiO/YSZ composites during both burnout and sintering were analysed based on concepts of constrained sintering of composite powder mixtures. In some cases constrained sintering was evident, while in others, a more simple rule of mixtures behaviour for shrinkage as a function of YSZ content was observed.; When nickel oxide is reduced to nickel metal during the reduction stage there is essentially no change in the composite volume for the composites containing YSZ because the YSZ prevents the composites from shrinking. After reduction the additional porosity generated in the composites is equivalent to the change in volume due to the reduction of nickel oxide to nickel metal.; When measuring the electrical conductivity, each composite type demonstrated classic percolation behaviour. The NiGr/YSZ composites had the lowest percolation threshold, followed by the Ni/YSZ and NiO/YSZ composites. When graphite was added with a nickel coating, the added porosity did not disrupt the nickel percolation
机译:固体氧化物燃料电池(SOFC)是一种能量转换装置,具有以环保方式有效发电的潜力。通常,SOFC使用氢气或碳氢化合物作为燃料和空气作为氧化剂,在750°C至1000°C的温度下运行。构成燃料电池的三个主要成分是电解质,阴极和阳极。目前,最先进的SOFC由致密的氧化钇稳定的氧化锆(YSZ)电解质,多孔的锰酸镧阴极和多孔的镍/ YSZ复合阳极制成。随着阳极支撑的SOFC的出现以及人们对使用更广泛的燃料(例如含硫燃料)的兴趣日益浓厚,对阳极性能的了解变得越来越重要。当前的阳极的性能受到限制,这是因为最小的镍含量(由导电性的最小镍含量决定)和最大允许的镍含量(避免与YSZ电解质发生热失配)所施加的镍含量范围狭窄。另外,关于使用镍金属而不是传统的氧化镍粉末作为起始阳极材料,以及孔隙率如何影响阳极性能的文献研究很少。这项研究的目的是确定镍形态和孔隙率分布对流延Ni / YSZ复合材料的加工和性能的影响。具体而言,研究了由YSZ,镍,氧化镍(NiO),镀镍石墨(NiGr)和/或石墨(Gr)粉末制成的流延铸造复合材料的烧结特性,电导率和热膨胀行为。除了由100%YSZ,100%Ni和100%NiO粉末制成的样品外,还为该研究创建了五种复合类型:NiO / YSZ,NiO&Gr / YSZ,Ni / YSZ,NiGr / YSZ和Ni&Gr / YSZ。镍含量在总固含量的4%(体积)和总固含量的77%(体积)之间变化。还产生了另一组复合材料,其固含量为总固体成分的镍含量为27%(体积),镍含量为47%(体积),并且石墨含量也有所变化。在燃尽阶段,由氧化镍粉末制成的复合材料略微收缩,而由镍金属制成的复合材料由于镍的氧化而膨胀。低于生坯体积的20vol%的石墨添加量不会改变燃尽期间复合材料的尺寸变化,但是大于生坯体积的25vol%的石墨负载导致复合材料的厚度显着膨胀。烧结后,随着镍负载量的增加,体积烧结收缩量降低,并且与由镍金属制成的复合材料相比,由氧化镍制成的复合材料的体积烧结收缩量更大。包含石墨的复合物中产生的孔隙率略高于添加到复合物中的石墨的体积,并且远大于不含石墨的复合物中包含的孔隙率。基于复合粉末混合物的约束烧结概念,分析了多孔Ni / YSZ和NiO / YSZ复合材料在烧尽和烧结过程中的尺寸变化。在某些情况下,烧结很明显,而在另一些情况下,观察到了混合物行为的更简单规则,即收缩率随YSZ含量的变化而变化。当在还原阶段将氧化镍还原成镍金属时,包含YSZ的复合材料的复合材料体积基本上没有变化,因为YSZ可以防止复合材料收缩。还原后,复合材料中产生的额外孔隙率等于由于氧化镍还原为镍金属而引起的体积变化。在测量电导率时,每种复合材料类型均表现出经典的渗滤行为。 NiGr / YSZ复合材料的渗透阈值最低,其次是Ni / YSZ和NiO / YSZ复合材料。当在石墨上添加镍涂层时,增加的孔隙率不会破坏镍的渗透

著录项

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号