首页> 外文学位 >Precision clock synthesis using direct modulation of front-end multiplexers/demultiplexers in high speed serial link transceivers.
【24h】

Precision clock synthesis using direct modulation of front-end multiplexers/demultiplexers in high speed serial link transceivers.

机译:在高速串行链路收发器中使用前端多路复用器/多路分解器的直接调制来进行精确的时钟合成。

获取原文
获取原文并翻译 | 示例

摘要

High-speed CMOS serial links have been crucial in matching off-chip system bandwidth with the increasing on-chip demand. Conventional serial link architectures typically use multi-phase clocking structures to achieve a pin bandwidth faster than the on-die logic switching speed. However, such multi-phase clocking architectures typically use several stages of clock fanout buffering, which dissipate considerable power and suffer from significant sources of timing uncertainty, namely power supply induced jitter and process dependent static phase offset.; This thesis presents a new serial link architecture which addresses the timing uncertainties caused by power supply noise and process mismatch. First, process variation and power supply sensitivity in serial link clock buffers are examined and then shown to de grade further in future scaled CMOS processes. Next, a new architecture is presented that alleviates this problem: direct drive resonant clocking. The complementary phases of an integrated LC-VCO directly drive the final output multiplexer in the transmitter, resonating the capacitive load and eliminating clock buffers, thereby reducing power dissipation, power supply induced jitter, and static phase offset. In the receiver, a similar technique is applied, where the front-end 10GHz input sampler is directly driven by a different LC-VCO. Several side-effects of this direct drive resonant clocking technique such as increased kickback-induced jitter, reduced tuning range, and reduced bandwidth are examined. Finally, two test chips are designed and fabricated in 0.13um CMOS technology, exhibiting a 20Gb/s data rate, low power(165mW in the transmitter), and low area. The resulting power supply susceptibility is reduced by 10x and process mismatch phase error by 5x.
机译:高速CMOS串行链路对于匹配片外系统带宽和不断增长的片上需求至关重要。常规的串行链路体系结构通常使用多相时钟结构来实现引脚带宽,其速度比片上逻辑切换速度快。但是,这样的多相时钟体系结构通常使用几级时钟扇出缓冲,这会消耗大量功率,并且会受到时序不确定性的重要影响,即电源引起的抖动和与工艺有关的静态相位偏移。本文提出了一种新的串行链路架构,该架构解决了电源噪声和工艺失配引起的时序不确定性。首先,检查了串行链路时钟缓冲器中的工艺变化和电源灵敏度,然后证明它们在将来扩展的CMOS工艺中会进一步降低性能。接下来,提出了一种缓解该问题的新架构:直接驱动谐振时钟。集成LC-VCO的互补相位直接驱动发射器中的最终输出多路复用器,从而使电容性负载产生谐振并消除时钟缓冲器,从而降低了功耗,电源引起的抖动和静态相位偏移。在接收器中,采用了类似的技术,其中前端10GHz输入采样器由不同的LC-VCO直接驱动。研究了这种直接驱动谐振时钟技术的一些副作用,例如反冲引起的抖动增加,调谐范围减小和带宽减小。最后,以0.13um CMOS技术设计和制造了两个测试芯片,它们具有20Gb / s的数据速率,低功耗(发射器中为165mW)和较小的面积。由此产生的电源敏感性降低了10倍,过程失配相位误差降低了5倍。

著录项

  • 作者

    Chiang, Patrick.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号