首页> 外文学位 >Photoemission spectroscopy study of indium phosphide NEA photocathodes: Activation, decay mechanism, and energy and angular distribution.
【24h】

Photoemission spectroscopy study of indium phosphide NEA photocathodes: Activation, decay mechanism, and energy and angular distribution.

机译:磷化铟NEA光电阴极的光发射光谱研究:活化,衰减机理以及能量和角度分布。

获取原文
获取原文并翻译 | 示例

摘要

The high quantum efficiency (QE) of InP-based photocathode is realized by depositing Cs and oxygen molecules on the surface of heavily doped p-type semiconductors, where they form a thin activation layer. The atomic structure of this Cs/0 activation layer is, however, not well understood, and the properties of photoelectrons from InP-based cathodes also require careful study. In this study, three aspects of InP photocathodes were studied: (1) the atomic arrangement of Cs oxides in the activation layer; (2) the decay mechanism of InP photocathodes in a standard ultra high vacuum (UHV) system; and (3) the energy and angular distribution of photoelectrons from InP photocathodes.;The atomic arrangement of Cs oxides was investigated by using Angle Dependent Photoemission Spectroscopy (ADPES). Two distinct peaks in the O1s core level and valence band spectra led us to the discovery of two molecular oxygen species incorporated in the thin activation layer: Cs peroxides (O2 2-) and Cs superoxides (O2-). The different angular dependences of these oxides in the photoemission spectra result from the different vertical locations of oxygen molecules in each Cs oxide, and the lateral distribution model of Cs peroxides and Cs superoxides was suggested based on this angular dependence and the estimated thickness of the Cs/O layer (∼7A).;The QE of InP photocathodes in a standard UHV system decreases with time, while commercial sealed photocathode tubes last for years without decay. This QE decay is due to the chemical transformation of Cs peroxides to Cs superoxides and subsequent substrate oxidation, as deduced from observations of the peak evolutions in the valence band, O1s core level, and the In4d core level photoemission spectra. This transformation is thermodynamically favorable when residual oxygen is available, and the decrease of Cs peroxides is in agreement with the lateral distribution model.;Finally, we studied the energy and angular distribution of photoelectrons from InP photocathodes. These properties have practical importance in terms of the resolution and focusing capability of photocathodes. Two different kinds of photoelectrons were observed in energy distribution curve (EDC) measurements. They are thermalized electrons in Gamma valley and electrons transferred into L valley, and we observed the increase of L valley electrons when a higher photon energy is used. The L valley electrons have a larger angular distribution than the Gamma valley electrons, and this can be explained by the larger effective mass of the L valley relative to the Gamma valley.
机译:InP基光电阴极的高量子效率(QE)是通过将Cs和氧分子沉积在重掺杂的p型半导体表面上而形成的,该表面形成薄的激活层。然而,该Cs / 0活化层的原子结构尚不十分清楚,来自InP基阴极的光电子的特性也需要仔细研究。在这项研究中,研究了InP光电阴极的三个方面:(1)Cs氧化物在活化层中的原子排列; (2)InP光电阴极在标准超高真空(UHV)系统中的衰减机理; (3)InP光电阴极的光电子能量和角分布。通过角度依赖性光发射光谱法研究了Cs氧化物的原子排列。 O1s核心能级和价带谱中的两个不同的峰使我们发现了结合在薄活化层中的两种分子氧:Cs过氧化物(O2 2-)和Cs超氧化物(O2-)。这些氧化物在光发射光谱中的不同角度依赖性是由于每种Cs氧化物中氧分子的垂直位置不同而引起的,并基于该角度依赖性和Cs的估算厚度,提出了Cs过氧化物和Cs超氧化物的横向分布模型。 / O层(〜7A);;标准UHV系统中InP光电阴极的QE随时间而降低,而商用密封光电阴极管可以持续数年而不会衰减。这种QE衰减是由于Cs过氧化物从化学转变为Cs超氧化物以及随后的底物氧化所致,这是根据价带,O1s核心能级和In4d核心能级发光光谱的峰演化观察得出的。当残余氧可用时,这种转变在热力学上是有利的,并且Cs过氧化物的减少与侧向分布模型相符。最后,我们研究了InP光电阴极的光电子的能量和角分布。这些性质在光电阴极的分辨率和聚焦能力方面具有实际重要性。在能量分布曲线(EDC)测量中观察到两种不同类型的光电子。它们是伽马谷中的热电子,并且电子转移到L谷中,并且当使用更高的光子能量时,我们观察到L谷电子的增加。 L谷电子具有比Gamma谷电子更大的角度分布,这可以通过L谷相对于Gamma谷更大的有效质量来解释。

著录项

  • 作者

    Lee, Dong-Ick.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号