首页> 外文学位 >Power and thermal challenges for microprocessor architectures.
【24h】

Power and thermal challenges for microprocessor architectures.

机译:微处理器架构的电源和散热挑战。

获取原文
获取原文并翻译 | 示例

摘要

Power dissipation has become a critical design constraint for a wide range of electronics design: from high-performance microprocessor architectures to much smaller embedded systems. The demand for more sophisticated and faster computation, along with supply voltage scaling limitations are among the main driving forces behind the power dissipation increase. As a result, optimization techniques that target power and temperature need to be incorporated at every stage of the design process, from the operating system and architecture level, to behavioral synthesis and circuit level. In this thesis we propose and investigate the effectiveness of power and temperature optimization techniques at various abstraction levels targeting microprocessor architectures and embedded systems design flow. We look at circuit level power reduction through effective distribution of the existing slack formulated as a budgeting problem. Our experimental analysis reveals 15% improvement in average power and 18% in maximum power consumption over MCNC benchmark set. For behavioral synthesis we investigate low power scheduling selection. We demonstrate that the decisions made at higher levels of abstraction such as behavioral synthesis have significant impact on the design space of the following stages. Moreover, in some cases the design space restrictions are unintentional and undetected. We propose a metric-based evaluation technique that reduces the on-chip temperatures by 12°C on average for data flow graphs extracted from the MediaBench Suite. At the architecture-level we explore the benefits of hierarchical and factored architectures in reducing the power waste due to sub-optimal processor resource sizes. Our analysis indicates power savings around 20% for such architectures. Furthermore, an additional 13% reduction is also possible through adapting the processor resources to the application phase behavior. By minimizing the sizes of performance enhancing structures on the critical path and utilizing hierarchical extensions to extract the distant ILP, it is possible to improve the microprocessor thermal profile. We observed 86% reduction in the number of cycles over the critical temperature threshold. Using this framework, we propose a reduced-overhead activity migration scheme. As a result of the data buffering in shared structures, thermally-triggered activity migration outperforms other dynamic thermal management techniques such as idealized dynamic frequency scaling and global clock gating. Finally, we investigate operating system level thermal management on a Power4-like architecture. We analyze the effects of thread selection on processor temperature, by utilizing the already existing thread scheduling infrastructure. Scheduling decisions are based on dynamic thermal profiling of threads and temperature readings from on-chip sensors. Our MinTemp scheduling policy yields only 3% cycles above the threshold, with virtually no performance degradation over thermally challenging SPEC2000 benchmark suite.
机译:功耗已成为各种电子设计的关键设计约束:从高性能微处理器体系结构到更小的嵌入式系统。对更复杂,更快速的计算的需求以及电源电压缩放的限制是功耗增加背后的主要驱动力。结果,在设计过程的每个阶段,从操作系统和体系结构级别到行为综合和电路级别,都需要采用针对功耗和温度的优化技术。在本文中,我们提出并研究了针对微处理器体系结构和嵌入式系统设计流程的各种抽象级别的功率和温度优化技术的有效性。我们着眼于通过有效地分配现有的松弛量来降低电路级功耗,这些松弛量被制定为预算问题。我们的实验分析表明,与MCNC基准测试相比,平均功率提高了15%,最大功耗提高了18%。对于行为综合,我们研究了低功耗调度选择。我们证明,在较高抽象级别上做出的决策(例如行为综合)对以下阶段的设计空间具有重大影响。此外,在某些情况下,设计空间限制是无意的且未被发现。我们提出了一种基于指标的评估技术,该技术将从MediaBench Suite提取的数据流图平均降低片上温度12°C。在体系结构级别,我们探讨了分层和因式体系结构在减少由于次优处理器资源大小而导致的功耗方面的好处。我们的分析表明,此类架构可节省约20%的功耗。此外,通过使处理器资源适应应用程序阶段的行为,还可以再减少13%。通过最小化关键路径上的性能增强结构的大小并利用层次扩展来提取远距离的ILP,可以改善微处理器的散热性能。我们观察到超过临界温度阈值的循环次数减少了86%。使用此框架,我们提出了减少开销的活动迁移方案。作为共享结构中数据缓冲的结果,热触发的活动迁移优于其他动态热管理技术,例如理想化的动态频率缩放和全局时钟门控。最后,我们研究了类似Power4的体系结构上的操作系统级热管理。我们利用现有的线程调度基础结构来分析线程选择对处理器温度的影响。调度决策基于线程的动态热分析和片上传感器的温度读数。我们的MinTemp调度策略仅比阈值高出3%的周期,与耐热的SPEC2000基准套件相比,几乎没有性能下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号