首页> 外文学位 >Simulateur collaboratif de chirurgie d'instrumentation du rachis scoliotique en realite virtuelle avec interface haptique logicielle.
【24h】

Simulateur collaboratif de chirurgie d'instrumentation du rachis scoliotique en realite virtuelle avec interface haptique logicielle.

机译:虚拟现实中带有软件触觉界面的脊柱侧凸脊柱器械手术协作模拟器。

获取原文
获取原文并翻译 | 示例

摘要

The general objective of this research consisted in elaborating the software prototype of a collaborative virtual reality scoliosis instrumentation surgery simulator, including force feedback for the main corrective surgical manoeuvres, as an alternative training and learning tool. We stated two hypotheses. The first hypothesis was that the main corrective manoeuvres of scoliosis instrumentation surgery can be modeled and simulated in immersive virtual reality with a software haptic interface and a patient-specific biomechanical model at +/-15 % of the actual force values as perceived by expert surgeons. The second hypothesis was that a multirate haptic rendering loop, based on a prediction / correction algorithm, will achieve the minimal required update rate (1000 Hz) for a functional force feedback in a realistic training context.;The maximal forces during the rod rotation manoeuvre simulated for four scoliotic patients matched the few data available in the literature. The prediction / correction algorithm led to a haptic update rate surpassing the minimal rate required for a haptic interface. The simulated force profile evaluated by expert surgeons showed a global realistic appearance with slightly inferior values compared to forces applied in the operating room. We also demonstrated that the simulator was fully functional for geographically distant participants and that in a relatively short time, two users on different continents could collaboratively, with mixed equipment, complete a predetermined surgical scenario for scoliosis surgical training on a specific patient. These results allowed us to confirm the second hypothesis and partially confirm the first one.;Scoliosis instrumentation surgery is a new application for a medical haptic system because of its distinctive characteristics. This research project differed from other surgical simulators due to its integration of a complex patient-specific biomechanical model into a virtual reality immersive environment with a realistic software interface. From a complex physical model, unfit for haptic rendering, we developed a software haptic interface fast enough for real-time haptic system control. Our research allowed for a better use of virtual reality technologies and for a better visualization of scoliosis surgery. We have laid the foundations for a quantitative validation of the haptic forces obtained from the biomechanical model by expert surgeons. (Abstract shortened by UMI.);To test these hypotheses, our methodology included a modular client - server software architecture (developed in previous work) composed of three main entities: a collaborative biomechanical server, a telepresence multi-user server, and a virtual reality simulation client able to run on a standard PC as well as on a CAVE-like immersive environment system. We implemented a software haptic interface for the central corrective manoeuvre, the rod rotation. The haptic modelling on the server side relied on an adapted version of a complex patient-specific biomechanical model from a surgical planning tool, and the haptic rendering on the client side relied on a prediction / correction algorithm inside a multirate rendering loop to compensate for time delays mainly due to computations on the server side and to network latency. We took advantage of the fact that it is possible to directly predict the forces rather than having to predict the device position, as it is the case for most of the systems using prediction to deal with time delays. The predictive part thus relied on haptic values precomputed during the training session, and the corrective part used real haptic values and a third-order convergence mechanism. In the absence of a physical haptic interface specific to scoliosis surgery, to be developed in a future project, we used a color-coded visual rendering of haptic values and a pseudo-haptic rendering that modified the control / display ratio, i.e. the surgical tool movement visual restitution gain. We improved users' feeling of telepresence during training sessions by sharing haptic values and implant, rod, and manipulated tool changes in position among clients, and demonstrated through collaborative transatlantic and transcontinental tests that the simulator was functional in realistic conditions. The simulated force profile of a specific scoliotic case has been evaluated by a small group of expert surgeons with a simple mechanical apparatus recreating the rod rotation manoeuvre.
机译:这项研究的总体目标在于详细阐述协作虚拟现实脊柱侧弯器械手术模拟器的软件原型,其中包括用于主要矫正手术动作的力反馈,作为替代的培训和学习工具。我们提出了两个假设。第一个假设是,脊柱侧弯器械手术的主要矫正措施可以在沉浸式虚拟现实中通过软件触觉界面和特定于患者的生物力学模型在逼真的虚拟现实中进行建模和仿真,专家外科医师可以感知到实际力值的+/- 15% 。第二个假设是,基于预测/校正算法的多速率触觉渲染环将在现实的训练环境中实现功能力反馈所需的最小更新速率(1000 Hz).;杆旋转操纵过程中的最大力对四名脊柱侧凸患者进行的模拟研究与文献中可获得的少数数据相匹配。预测/校正算法导致触觉更新速率超过触觉界面所需的最小速率。由专家外科医生评估的模拟力分布显示出整体逼真的外观,与在手术室中施加的力相比,其值略逊一筹。我们还证明了该模拟器对遥远的参与者具有完全的功能,并且在相对较短的时间内,不同大陆的两个用户可以使用混合设备协作完成针对特定患者的脊柱侧弯手术培训的预定手术方案。这些结果使我们得以证实第二种假设,而部分地证实了第一种假设。脊柱侧弯器械手术因其独特的特性而在医学触觉系统中得到了新的应用。该研究项目与其他外科手术模拟器不同,因为它将复杂的特定于患者的生物力学模型集成到具有逼真的软件界面的虚拟现实沉浸式环境中。通过不适用于触觉渲染的复杂物理模型,我们开发了足够快的软件触觉界面,用于实时触觉系统控制。我们的研究允许更好地使用虚拟现实技术并更好地可视化脊柱侧弯手术。我们为定量验证外科医生从生物力学模型获得的触觉力奠定了基础。 (摘要由UMI缩短。);为了检验这些假设,我们的方法包括模块化客户端-服务器软件体系结构(在先前的工作中开发),该体系结构由三个主要实体组成:协作生物力学服务器,网真多用户服务器和虚拟现实仿真客户端,可以在标准PC以及类似CAVE的沉浸式环境系统上运行。我们实现了中央矫正动作(杆旋转)的软件触觉界面。服务器端的触觉建模依赖于手术计划工具提供的复杂的针对患者的生物力学模型的改编版本,而客户端端的触觉渲染则依赖于多速率渲染循环中的预测/校正算法来补偿时间。延迟主要是由于服务器端的计算以及网络延迟。我们利用了这样一个事实,即可以直接预测力,而不必预测设备位置,因为大多数系统都使用预测来处理时间延迟。因此,预测部分依赖于在训练期间预先计算的触觉值,而校正部分则使用了真实的触觉值和三阶收敛机制。在没有针对脊柱侧弯手术的物理触觉界面的情况下(我们将在未来的项目中开发),我们使用了彩色编码的触觉值的视觉渲染和伪触觉渲染,以修改控制/显示比例,即手术工具运动视觉恢复增益。通过在客户之间共享触觉值以及植入物,杆和操纵工具的位置变化,我们改善了用户在场上的临场感,并通过跨大西洋和跨大陆的协作测试证明了该模拟器在现实条件下可以正常工作。一小组脊柱侧弯病例的模拟力分布已经由一小群专业的外科医生用简单的机械设备评估了杆的旋转动作进行了评估。

著录项

  • 作者

    Cote, Melissa.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Biomedical.;Health Sciences Surgery.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号