首页> 外文学位 >A One-Dimensional Turbulence (ODT) study of soot formation, transport, and radiation interactions in meter-scale buoyant turbulent flames.
【24h】

A One-Dimensional Turbulence (ODT) study of soot formation, transport, and radiation interactions in meter-scale buoyant turbulent flames.

机译:一米湍流(ODT)研究米级浮力湍流火焰中烟灰的形成,传输和辐射相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Current ability to predict radiation heat release from large fires via numerical simulation is limited by the lack of affordable models for the coupled effects of radiation and soot formation. Predicting soot loadings and temperatures is complicated by the interrelationships between many physical processes which act on the soot. These processes act over a range of length and time scales which is prohibitively expensive to resolve in a transient, 3-D numerical simulation. The computational expense and the complexity of the interactions motivate the development of a simplified reacting flow model in which some of the relevant interactions may be more easily studied. In the present work the flow field is assumed to follow a boundary layer assumption with Boussinesq forcing, gas phase composition is assumed to be a unique function of the mixture fraction and enthalpy, and soot formation rates are assumed to follow a simple two-equation model for particle inception, surface growth and coagulation, and oxidation. A One-Dimensional Turbulence (ODT) simulation is employed to evolve a collection of 2-dimensional mixing states representative of turbulent mixing in the simplified model fire. Stochastic variations between realizations of the simulation are reproduced similar to the variation in instantaneous snapshots of a turbulent flow field the statistical solution can be found with a Monte Carlo approach. The evolution of soot distributions are explored and factors affecting this evolution are identified, which include the (relatively slow) soot formation rates, the history effect introduced by radiation losses, and molecular transport processes which act differently on soot particles than on the gas phase species. Sensitivities to modeling parameters for these processes are assessed. The evolution of the mixture fraction PDF is identified as a key driver for soot transport in mixture fraction space, whereas thermophoretic transport is shown to be negligible in fully turbulent fires. The opportunities afforded by full resolution of species and temperature fields are demonstrated by a study of spectral radiation emission explaining the experimental observation that radiation from a fire can be fit approximated as that from a gray body.
机译:目前缺乏通过数值模拟预测大火释放的辐射热量的能力,因为缺乏可承受的辐射和烟灰形成耦合效应模型。由于许多作用于烟灰的物理过程之间的相互关系,因此难以预测烟灰的负荷和温度。这些过程在一定的长度和时间范围内起作用,而在瞬态3-D数值模拟中解决这些过程的成本过高。相互作用的计算费用和复杂性促使简化反应流模型的发展,在该模型中,一些相关的相互作用可能更容易研究。在目前的工作中,假定流场遵循边界层假设并具有Boussinesq强迫,假定气相成分是混合物分数和焓的唯一函数,并且假定烟灰形成速率遵循简单的两方程模型用于粒子起始,表面生长和凝聚以及氧化。使用一维湍流(ODT)模拟来演化二维混合状态的集合,这些状态代表简化模型火灾中的湍流混合。再现了模拟实现之间的随机变化,类似于湍流场瞬时快照的变化,可以使用蒙特卡洛方法找到统计解决方案。研究了烟尘分布的演变,并确定了影响这种演变的因素,包括(相对较慢)的烟尘形成速率,辐射损失引入的历史效应以及对烟尘颗粒的作用不同于对气相物种的分子传输过程。 。评估对这些过程的参数建模的敏感性。混合物分数PDF的演变被确定为在混合物分数空间中烟灰运输的关键驱动力,而在完全湍流的火中,热泳运输却可以忽略不计。通过对光谱辐射发射的研究证明了物种和温度场的完全分辨所提供的机会,该实验解释了实验观察到,火的辐射可以近似地近似于灰体的辐射。

著录项

  • 作者

    Ricks, Allen Joseph.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号