首页> 外文学位 >Interfacing of neurons with layer-by-layer thin films of semiconductor nanomaterials.
【24h】

Interfacing of neurons with layer-by-layer thin films of semiconductor nanomaterials.

机译:神经元与半导体纳米材料的逐层薄膜的接口。

获取原文
获取原文并翻译 | 示例

摘要

The stimulation of neuron cells selectively, either by position or size and sending action potentials unidirectionally via a biocompatible interface is of considerable interest for treatments of neuronal injuries and sensory deficits, specially, stimulating visual cortex with high density surface electrodes. The use of electrical current directly to stimulate neurons through metallic or non-metallic electrodes presents several challenges such as non selective stimulation, rigid invasive geometrical shapes and bioincompatibility. Further, the ideal electrodes are required to be in the same size as neuron cells for selective stimulation.; Presented work was focused on developing a biocompatible and remotely controllable neuron/thin film interfaces which can stimulate neuron cells upon absorption of visible light or infrared radiation. Since unique optical and electrical properties of nanomaterials offer several advantages over conventional materials for neuron cell stimulation, semiconductor nanomaterials (i.e. HgTe nanoparticles and single wall carbon nanotubes) were selected for the fabrication of neural interfaces. LBL technique was used to fabricate thin films assemblies on ITO-coated glass substrates.; The LBL thin films of nanomaterials were improved in terms of material properties and processing techniques for efficient photo conversion since stimulation strongly depends on the amount of current generated. Biocompatibility and accumulation of charge is the key for better interfacing and stimulation of neuron cells with LBL thin films. Hence, special biocompatible clay layers were deposited on LBL thin film assembly to improve biocompatibility and accumulation of charges on the interface. Generated action potentials of stimulated neuron cells were detected using voltage-clamped and atomic force microscopic (AFM) techniques. Further, a mathematical model was proposed to explain the diffusion dependant current generation behavior of LBL thin films in both aqueous and physiological electrolytes. The effect of internal concentration of redox species on the magnitude and shape with respect to diffusion across the LBL thin film interface was investigated in detail. Most importantly the effect of diffusion length of redox species on porous LBL thin films with nano-scale thickness was illustrated. Further this work was extended to explain the change of concentration profiles inside the LBL thin film with respect to surface coverage.
机译:对于神经元损伤和感觉缺陷的治疗,特别是通过高密度表面电极刺激视皮层,通过位置或大小选择性地刺激神经元细胞,或者通过生物相容性界面单向​​发送动作电位,是引起人们极大兴趣的。直接使用电流通过金属或非金属电极刺激神经元提出了一些挑战,例如非选择性刺激,刚性侵入性几何形状和生物不相容性。此外,理想的电极需要具有与神经元细胞相同的尺寸以进行选择性刺激。目前的工作集中在开发生物相容性和可远程控制的神经元/薄膜界面,该界面在吸收可见光或红外辐射后可以刺激神经元细胞。由于纳米材料独特的光学和电学性质比神经细胞刺激的常规材料具有多个优势,因此选择了半导体纳米材料(即HgTe纳米颗粒和单壁碳纳米管)来制造神经界面。 LBL技术用于在涂有ITO的玻璃基板上制造薄膜组件。纳米材料的LBL薄膜在材料特性和有效的光转换处理技术方面得到了改善,因为刺激强烈取决于产生的电流量。生物相容性和电荷积累是与LBL薄膜更好地接口和刺激神经元细胞的关键。因此,特殊的生物相容性粘土层沉积在LBL薄膜组件上,以改善生物相容性和界面上电荷的积累。使用电压钳位和原子力显微镜(AFM)技术检测受刺激的神经元细胞产生的动作电位。此外,提出了一个数学模型来解释LBL薄膜在水电解质和生理电解质中的扩散相关电流产生行为。详细研究了氧化还原物质的内部浓度对跨LBL薄膜界面扩散的大小和形状的影响。最重要的是,说明了氧化还原物质的扩散长度对具有纳米级厚度的多孔LBL薄膜的影响。进一步地,扩展了该工作以解释LBL薄膜内的浓度分布相对于表面覆盖率的变化。

著录项

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号