首页> 外文学位 >A micromechanics-inspired three-dimensional constitutive model for the thermomechanical response of shape-memory alloys.
【24h】

A micromechanics-inspired three-dimensional constitutive model for the thermomechanical response of shape-memory alloys.

机译:微机械启发的三维本构模型,用于形状记忆合金的热机械响应。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this thesis is to develop a three-dimensional micromechanics-inspired constitutive model for polycrystalline shape-memory alloys. The model is presented in two forms: (1) The one-dimensional framework where we picture the ability of the model to capture the main properties of shape-memory alloys such as superelasticity and the shape-memory effect; (2) the three-dimensional model where micromechanics origins of the model, the concepts that emerged from those analyses and their relation to macroscopic properties in both single and polycrystals are presented.; We use this framework to study the effects of the texture and anisotropy in material behavior. Since phase transformation often competes with plasticity in shape-memory alloys, we incorporate that phenomenon into our model. We also demonstrate the ability of the model to predict the response of the material and track the phase transformation process for multi-axial, proportional and non-proportional loading and unloading experiments. We consider both stress-controlled and strain-controlled experiments and develop the model for isothermal, adiabatic and non-adiabatic thermal conditions. Adiabatic heating and loading rate both lead to apparent hardening at high rates. We also visit this problem and examine the relative role of these two factors.; Finally we extend our model to study the reversible alpha ↔ epsilon martensitic phase transformation in pure iron. We consider a wide range of loading rates ranging from quasistatic to high rate dynamic loading and use our model to describe the evolution of the microstructure along with the effects of rate hardening and thermal softening.
机译:本文的目的是为多晶形状记忆合金建立一个三维微力学启发的本构模型。该模型以两种形式表示:(1)一维框架,其中我们描述了模型捕获形状记忆合金的主要特性(如超弹性和形状记忆效应)的能力; (2)提出了三维模型,其中模型的微力学起源,从这些分析中出现的概念以及它们与单晶和多晶宏观性能的关系。我们使用此框架来研究纹理和各向异性对材料行为的影响。由于相变通常会在形状记忆合金中与可塑性竞争,因此我们将这种现象纳入模型中。我们还展示了该模型预测材料响应并跟踪多轴,比例和非比例加载和卸载实验的相变过程的能力。我们考虑了应力控制和应变控制的实验,并开发了等温,绝热和非绝热热条件的模型。绝热加热和加载速率均导致高速率下的表观硬化。我们还探究了这个问题,并研究了这两个因素的相对作用。最后,我们扩展模型以研究纯铁中可逆的α↔ε马氏体相变。我们考虑了从准静态到高速动态加载的多种加载速率,并使用我们的模型描述了微观结构的演变以及速率硬化和热软化的影响。

著录项

  • 作者

    Sadjadpour, Amir.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Applied Mechanics.; Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号