首页> 外文学位 >Engineering protein-based materials through coiled-coil motifs.
【24h】

Engineering protein-based materials through coiled-coil motifs.

机译:通过盘绕线圈图案设计基于蛋白质的材料。

获取原文
获取原文并翻译 | 示例

摘要

Natural biomaterials are highly organized from the molecular to the macroscopic level in a hierarchical manner, requiring synthetic technologies to achieve this level of complexity. A biosynthetic approach to material design has emerged as an attractive option. In particular, proteins represent a promising class of molecules for creating new materials due to their determined sequence and structure. The research described in this thesis focuses on engineering protein-based materials using coiled-coil motifs. The coiled coil is a common protein architecture consisting of two or more α-helices wrapped around one another to form a supercoil. Despite its simple conformation, the coiled-coil motif plays diverse roles in biological systems functioning as sensors, recognition elements, scaffolds, levers, rotating arms and springs.;First, a designed parallel heterodimeric leucine zipper pair was used as the protein capture domain to construct an artificial polypeptide scaffold for surface functionalization. By using a mutant E. coli phenylalanyl-tRNA synthetase, the photoreactive amino acid para-azidophenylalanine was incorporated. This protein polymer was spin-coated and photocrosslinked to octyltrichlorosilane-treated surfaces. The resulting protein films were shown to immobilize recombinant proteins through association of coiled coil heterodimer. Furthermore, in conjunction with microfluidic chips that were specifically designed for on-chip mixing using laminar flow, gradients of leucine zipper tagged proteins were formed in the microchannels and immobilized on the engineered protein films. This provides a general technique for producing surface-bound multicomponent gradients. The adhesion of human umbilical vein endothelial cells cultured on a surface-bound gradient of cell binding ligands generated by this technique was examined. In addition, to generate protein walkers that have different lateral mobility rates on a surface, several variants of the leucine zipper pair with tunable heterodimerization affinities were designed and synthesized to allow diversity in the association strength of proteins linked to a surface.;The coiled-coil motif was also used to construct protein hydrogels. Hydrogels formed from a triblock artificial protein bearing dissimilar helical coiled-coil end domains (P and A) erode more than one hundred fold slower than hydrogels formed from those bearing the same end domains (either P or A). The reduced erosion rate is a consequence of the fact that looped chains are suppressed because P and A tend not to associate with each other. Thus, by harnessing selective molecular recognition, discrete aggregation number and orientational discrimination of coiled-coil protein domains, the erosion rate of hydrogels can be tuned over several orders of magnitude.;Finally, a biosynthetic approach was developed to control and probe cooperativity in multiunit biomotor assemblies by linking molecular motors to artificial protein scaffolds using the heterodimeric leucine zipper pair. This approach provides precise control over spatial and elastic coupling between motors. Cooperative interactions between monomeric kinesin-1 motors attached to protein scaffolds enhance hydrolysis activity and microtubule gliding velocity. However, these interactions are not influenced by changes in the elastic properties of the scaffold, distinguishing multimotor transport from that powered by unorganized monomeric motors. These results highlight the role of supramolecular architecture in determining mechanisms of collective transport.
机译:天然生物材料是从分子到宏观层次的高度组织化的层次结构,需要合成技术才能达到这种复杂程度。材料设计的生物合成方法已经成为一种有吸引力的选择。特别地,由于蛋白质确定的序列和结构,它们代表了一种有前途的用于创建新材料的分子。本文所描述的研究集中于利用卷曲螺旋基序工程化基于蛋白质的材料。盘绕的线圈是一种常见的蛋白质结构,由两个或两个以上彼此缠绕形成超螺旋的α-螺旋组成。尽管结构简单,但卷曲螺旋基序在生物系统中起着不同的作用,它们起着传感器,识别元件,支架,杠杆,旋转臂和弹簧的作用;首先,使用设计的平行异二聚亮氨酸拉链对作为蛋白质捕获域构建用于表面功能化的人工多肽支架。通过使用突变的大肠杆菌苯丙氨酰-tRNA合成酶,掺入了光反应性氨基酸对叠氮基苯丙氨酸。将该蛋白聚合物旋涂并光交联到辛基三氯硅烷处理过的表面上。所得的蛋白质膜显示出通过卷曲的线圈异二聚体的缔合而固定重组蛋白。此外,结合专门设计用于使用层流进行芯片上混合的微流控芯片,在微通道中形成了亮氨酸拉链标记的蛋白梯度,并将其固定在工程蛋白膜上。这提供了产生表面结合的多组分梯度的通用技术。检查了通过该技术产生的细胞结合配体的表面结合梯度上培养的人脐静脉内皮细胞的粘附性。此外,为了生成在表面上具有不同横向迁移率的蛋白步行者,设计并合成了具有可调异二聚亲和力的亮氨酸拉链对的多个变体,以允许与表面相连的蛋白质的缔合强度具有多样性。线圈基序也用于构建蛋白质水凝胶。由带有不同螺旋螺旋卷曲螺旋末端结构域(P和A)的三嵌段人工蛋白质形成的水凝胶,其腐蚀速度比由具有相同末端结构域(P或A)的那些形成的水凝胶慢一百倍。降低的腐蚀速率是由于P和A往往不相互结合而抑制了环状链这一事实的结果。因此,通过利用选择性分子识别,离散的聚集数和卷曲螺旋蛋白结构域的方向辨别,可以在几个数量级上调节水凝胶的腐蚀速率。最后,开发了一种生物合成方法来控制和探测多单元的协同性。生物分子组装,通过使用异二聚体亮氨酸拉链对将分子马达连接到人工蛋白质支架上。这种方法可精确控制电动机之间的空间和弹性耦合。附着在蛋白质支架上的单体kinesin-1马达之间的合作相互作用增强了水解活性和微管滑动速度。但是,这些相互作用不受支架弹性性能变化的影响,从而将多电机运输与无组织单体电机驱动的运输区分开来。这些结果突出了超分子体系结构在确定集体运输机制中的作用。

著录项

  • 作者

    Zhang, Kechun.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Chemistry General.;Chemistry Biochemistry.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号