首页> 外文学位 >Post-beamforming Filtering for Enhanced Contrast Resolution in Medical Ultrasound.
【24h】

Post-beamforming Filtering for Enhanced Contrast Resolution in Medical Ultrasound.

机译:波束形成后滤波可增强医学超声中的对比度分辨率。

获取原文
获取原文并翻译 | 示例

摘要

This thesis research addresses the use of post-beamforming pseudoinverse filtering algorithms for restoring contrast resolution in pulse-echo medical ultrasound imaging. Limited contrast resolution is probably the single most important limitation of ultrasound compared with leading medical imaging modalities. While speckle is a major contributor to the loss of contrast resolution, other significant contributors are low SNR and reverberations. We have investigated the use of coded excitation, together with a 1D post-beamforming pseudoinverse filter, in improving the SNR and reducing reverberation leading to enhanced contrast resolution, especially for deeper target. Experimental demonstration of the algorithm was carried out on a dual-mode ultrasound array (DMUA) prototype intended for use in image-guided noninvasive surgery [1]. We have successfully used coded excitation with receive pseudoinverse filtering to improve the resolution about 30% while maintaining the signal to noise ratio, reducing reverberation artifact. In addition, this result in conjunction with other techniques such as spatial directivity and gain compensation significantly improve the imaging field of view of the DMUA system.;With the advent of digital beamforming in array imaging, coarse aperture sampling is identified as another significant contributor to the loss of contrast resolution, especially in high frequency ultrasound (HFUS) imaging applications. This loss results from well-known beamforming artifacts (e.g. grating lobes), which produce "filling effects" in low-contrast targets (e.g. cysts and blood vessels). To address this issue, a 2D post-beamforming filtering approach was formulated from a discretized model of the transmit-receive 2D wavefront resulting from a given beamforming operation. This 2D filter operates on a collection of beamformed A-lines (e.g. from a linear array) with coefficients obtained from the regularized inversion of the 2D Fourier transform of the 2D point spread function of the array. This is highly significant due to the fact that direct inversion of the imaging matrix for a typical HFUS imaging scenario requires on the order of 100T flops. This was enabled by deriving the imaging operator on a 2D Cartesian grid which, under realistic simplifying assumptions, was shown to be represented by a matrix with a Toeplitz-block block Toeplitz (TBBT) structure. The dimensions of the TBBT are extremely large, which renders the direct inversion impractical, both in terms of memory requirements and number of operations. However, the large TBBT matrix has an asymptotically equivalent Circulant-block block Circulant (CBBC) matrix with equivalent eigenvalues. The CBBC is easily inverted using a finite-size 2D discrete Fourier Transform. Not only is this approach computationally efficient, it also results in a robust, physically meaningful regularized inversion. In particular, the approach transforms a usually ill-posed inverse problem to a well-posed filtering problem in k-space (through a 2D FFT). An important result from this study is that the spatial and contrast resolutions vary monotonically with the regularization parameter, beta. This result is of practical significance as it allows for the selection of the optimal value of beta in much the same way as time gain compensation, e.g. slider or dial. Using FIELDRTM, we present simulation data to demonstrate the tradeoff between contrast and spatial resolution. The results demonstrate the well-behaved nature of the point spread function (PSF) with the variation in a single regularization parameter. This characteristic of the pseudoinverse filter enables a parameter-controlled and more importantly, user-controlled imaging performance. These results are supported by image reconstructions from a simulated cyst phantom obtained using a finely sampled array and a coarsely sampled array. These results are also verified by image reconstructions obtained from Sonix RP system imaging a quality assurance phantom with contrast targets, optical nerve head in porcine eye in vitro and human carotid artery in vivo.
机译:本文的研究致力于在波束回波医学超声成像中使用波束形成后伪逆滤波算法恢复对比度分辨率。与领先的医学成像方式相比,有限的对比度分辨率可能是超声的最重要的单一限制。斑点是造成对比度分辨率下降的主要因素,而其他重要因素是低SNR和混响。我们研究了将编码激励与一维后波束形成伪逆滤波器一起使用,以改善SNR并减少混响,从而提高对比度分辨率,特别是对于较深的目标。该算法的实验演示是在旨在用于图像引导的非侵入性手术的双模式超声阵列(DMUA)原型上进行的[1]。我们已经成功地将编码激励与接收伪逆滤波配合使用,以将分辨率提高约30%,同时保持信噪比,从而减少了混响伪影。此外,该结果与空间定向性和增益补偿等其他技术相结合,可显着改善DMUA系统的成像视场。随着数字成像技术在阵列成像中的出现,粗孔径采样被认为是造成DMUA系统的另一个重要因素。对比度分辨率的损失,特别是在高频超声(HFUS)成像应用中。这种损失是由众所周知的波束成形伪影(例如,光栅波瓣)造成的,这些伪影在低对比度的目标(例如,囊肿和血管)中产生“填充效应”。为了解决这个问题,从给定波束形成操作产生的发射-接收2D波前的离散模型中制定了2D后波束形成滤波方法。该2D滤波器对波束形成的A线(例如来自线性阵列)的集合进行操作,其系数是从阵列2D点扩展函数的2D傅里叶变换的正则反演中获得的。这是非常重要的,因为对于典型的HFUS成像情况,成像矩阵的直接求逆需要大约100T触发器。这是通过在2D笛卡尔网格上推导成像算子实现的,在现实的简化假设下,该算符显示为具有Toeplitz块块Toeplitz(TBBT)结构的矩阵。 TBBT的尺寸非常大,从内存需求和操作数量两方面来看,直接反转都是不切实际的。但是,大型TBBT矩阵具有一个渐近等效的循环块块循环(CBBC)矩阵,具有相同的特征值。使用有限尺寸的2D离散傅里叶变换可以轻松地反转牛熊证。这种方法不仅计算效率高,而且还导致健壮的,具有物理意义的正则化反演。特别地,该方法将通常不适定的逆问题转换为k空间中的适定滤波问题(通过2D FFT)。这项研究的重要结果是空间分辨率和对比度分辨率随正则化参数beta单调变化。该结果具有实际意义,因为它允许以与时间增益补偿(例如,时间增益补偿)几乎相同的方式选择β的最佳值。滑块或拨盘。使用FIELDRTM,我们提供了模拟数据来证明对比度和空间分辨率之间的权衡。结果证明了点扩展函数(PSF)的行为良好,其单个正则化参数有所变化。伪逆滤波器的这一特性可以实现参数控制的成像性能,更重要的是可以实现用户控制的成像性能。通过使用精细采样阵列和粗糙采样阵列获得的模拟囊肿体模进行图像重建,可以支持这些结果。这些结果也通过从Sonix RP系统获得的图像重建得到验证,该图像重建具有质量保证体模的造影剂,该目标具有对比目标,体外猪眼的光学神经头和体内人颈动脉。

著录项

  • 作者

    Wan, Yayun.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Biomedical.;Physics Acoustics.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号