首页> 外文学位 >Radiographic Proton Imaging Using the Mevion-S250 Radiation Therapy System with Gafchromic Films and Computed Radiography
【24h】

Radiographic Proton Imaging Using the Mevion-S250 Radiation Therapy System with Gafchromic Films and Computed Radiography

机译:使用带有全色变色胶片的Mevion-S250放射治疗系统和计算机射线照相技术进行放射线质子成像

获取原文
获取原文并翻译 | 示例

摘要

Image-guided radiation therapy (IGRT) with on-board imaging systems provides updated images of patient anatomy using 2D-radiographic and 3D-CT imaging tools. Images from on-board imaging systems for IGRT are used to setup patients based on internal patient anatomy in most of the institutions and to evaluate patient anatomical variation just before dose delivery. IGRT allows accurate patient setup with smaller margins and lower doses for normal tissue and critical structures. Volumetric cone-beam CT images from IGRT with updated patient anatomy from images used for initial treatment planning can be used to consider anatomical variations and re-plan certain cases with adaptive radiation therapy. In this project, the image quality and dose of radiographic images with therapeutic 250 MeV proton beams from the MEVION-S250 system using Gafchromic films and computed radiographic plates were investigated quantitatively. Proton beams from the MEVION-S250 machine were used to acquire radiographic images of different phantoms that include the Leeds, Catphantom, Las Vegas, anthropomorphic head, and pelvis phantoms. The MEVION system provided a double scattering 250-MeV proton beam shaped with two nozzles (14 and 25cm diameters) and various beam ranges (5--32 cm) and range modulation (2--20 cm). The different testing objects in the Leeds phantom were used to quantify image quality. Imaging quality dependence on dose was quantified using different dose levels (0.1--12 MU). The Leeds phantom was place upstream outside the Bragg peak range while the image receptor either of films or CR-cassettes were placed downstream to measure the exiting protons. Image quality of the proton radiographic images was affected by multiple factors that include: (a) depth in phantom, (b) dose or monitor units (MU) from the proton imaging beam, (c) separation between the phantom and image receptor, (d) beam modulation and (e) beam range. Despite difficulties inherent to proton imaging, it has potential advantages particularly in proton treatment. If a proton beam is used for imaging in a way such that the Bragg Peak were deeper than the object being imaged, the imaging doses could potentially be lower compared to the imaging doses of traditional photon imaging techniques. Proton imaging may also improve proton dose calculations for proton treatment planning in addition to patient positioning accuracy. Image quality of the Leeds phantom improved with depth in phantom as the phantom location approached the Bragg-peak where the best position and contrast resolutions were obtained. As dose increased, image quality improved with better signal to noise ratio particularly at the Bragg-peak. The increased separation between the Leeds phantom and imaging plates leads to increased scatter or bending of the proton beam which degraded the image quality of the proton radiographic images. Short beam ranges and wider modulations improved image quality as the phantom became closer to or within the spread-out Bragg-peak, respectively. In conclusion, this study investigated quantitatively the dependence of image quality on different parameters including phantom depth, separation between the phantom and image receptor, range and modulation of high energy therapeutic proton beam. Radiographic proton images were feasible for clinical applications and had comparable image quality to kV-diagnostic photon images. The imaging doses deposited from the proton beams were comparable to or up to 15% lower than the imaging dose deposited by clinically used photon imaging techniques used for image-guided radiation therapy from the on-board imaging system.
机译:带有机载成像系统的图像引导放射治疗(IGRT)使用2D射线照相和3D-CT成像工具提供患者解剖结构的更新图像。在大多数机构中,用于IGRT的车载成像系统的图像用于根据患者的内部解剖结构设置患者,并在给药前评估患者的解剖结构变化。 IGRT可以为正常组织和关键结构提供准确的患者设置,并具有较小的余量和较低的剂量。来自IGRT的容积锥形束CT图像以及用于初始治疗计划的图像具有更新的患者解剖结构,可用于考虑解剖变化并通过自适应放射疗法重新规划某些病例。在该项目中,定量研究了使用Gafchromic胶片和计算机射线照相板从MEVION-S250系统获得的250 MeV治疗性质子束的射线照相图像的图像质量和剂量。来自MEVION-S250机器的质子束用于获取不同体模的射线照相图像,包括利兹,猫体,拉斯维加斯,拟人化头部和骨盆体模。 MEVION系统提供了具有两个喷嘴(直径分别为14和25cm)和各种射束范围(5--32 cm)和射程调制(2--20 cm)的双散射250-MeV质子束。利兹幻影中的不同测试对象用于量化图像质量。使用不同的剂量水平(0.1--12 MU)来量化成像质量对剂量的依赖性。利兹幻影放置在布拉格峰范围之外的上游,而胶片或CR盒式磁带的图像接收器放置在下游以测量出射的质子。质子射线照相图像的图像质量受多种因素影响,这些因素包括:(a)体模的深度,(b)质子成像束的剂量或监测单位(MU),(c)体模与图像受体之间的间隔,( d)光束调制和(e)光束范围。尽管质子成像固有的困难,但它具有潜在的优势,特别是在质子治疗中。如果使用质子束以使布拉格峰比被成像的对象更深的方式进行成像,则与传统的光子成像技术的成像剂量相比,成像剂量可能会更低。除患者定位准确性外,质子成像还可改善质子剂量规划的质子剂量计算。利兹模型的图像质量随模型深度的增加而提高,因为模型位置接近布拉格峰,在此可获得最佳位置和对比度分辨率。随着剂量的增加,图像质量提高,信噪比更好,特别是在布拉格峰。利兹幻影和成像板之间增加的分隔会导致质子束的散射或弯曲增加,从而降低质子射线照相图像的图像质量。当幻像分别变得更接近或扩展到布拉格峰内时,较短的光束范围和更宽的调制改善了图像质量。总之,本研究定量研究了图像质量对不同参数的依赖性,这些参数包括幻像深度,幻像与图像受体之间的距离,高能治疗质子束的射程和调制。射线照相质子图像对于临床应用是可行的,并且具有与kV诊断光子图像相当的图像质量。从质子束沉积的成像剂量比通过临床上使用的用于从车载成像系统进行图像引导放射治疗的光子成像技术沉积的成像剂量低或低15%。

著录项

  • 作者

    Wright, Giles.;

  • 作者单位

    The University of Oklahoma Health Sciences Center.;

  • 授予单位 The University of Oklahoma Health Sciences Center.;
  • 学科 Medicine.;Medical imaging.
  • 学位 M.S.
  • 年度 2018
  • 页码 85 p.
  • 总页数 85
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:40:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号