首页> 外文学位 >A Coupled Lattice Boltzmann-Extended Finite Element Model for Fluid-Structure Interaction Simulation with Crack Propagation.
【24h】

A Coupled Lattice Boltzmann-Extended Finite Element Model for Fluid-Structure Interaction Simulation with Crack Propagation.

机译:带有裂纹扩展的流固耦合模拟的耦合格子Boltzmann扩展有限元模型。

获取原文
获取原文并翻译 | 示例

摘要

Fatigue cracking of structures in fluid-structure interaction (FSI) applications is a pervasive issue that impacts a broad spectrum of engineering activities, ranging from large-scale ocean engineering and aerospace structures to bio-medical prosthetics. Fatigue is a particular concern in the offshore drilling industry where the problem is exacerbated by environmental degradation, and where structural failure can have substantial financial and environmental ramifications. As a result, interest has grown for the development of structural health monitoring (SHM) schemes for FSI applications that promote early damage detection. FSI simulation provides a practical and efficient means for evaluating and training SHM approaches for FSI applications, and for improving fatigue life predictions through robust parametric studies that address uncertainties in both crack propagation and FSI response. To this end, this paper presents a numerical modeling approach for simulating FSI response with crack propagation. The modeling approach couples a massively parallel lattice Boltzmann fluid solver, executed on a graphics processing unit (GPU) device, with an extended finite element (XFE) solid solver. Two-way interaction is provided by an immersed boundary coupling scheme, in which a Lagrangian solid mesh moves on top of a fixed Eulerian fluid grid. The theoretical basis and numerical implementation of the modeling approach are presented, along with a simple demonstration problem involving subcritical crack growth in a flexible beam subject to vortex-induced vibration.
机译:在流固耦合(FSI)应用中,结构的疲劳开裂是一个普遍的问题,它影响到广泛的工程活动,从大型海洋工程和航空航天结构到生物医学假肢。在海上钻探行业中,疲劳尤其令人担忧,因为环境退化加剧了问题的严重性,并且结构性故障可能会对财务和环境造成重大影响。结果,对于用于FSI应用的结构健康监测(SHM)方案的开发兴趣日益浓厚,这些方案可促进早期损伤的检测。 FSI仿真为评估和培训适用于FSI应用的SHM方法提供了一种实用而有效的方法,并且通过可靠的参数研究改善了疲劳寿命预测,这些研究解决了裂纹扩展和FSI响应中的不确定性。为此,本文提出了一种数值模拟方法,用于模拟裂纹扩展下的FSI响应。该建模方法将在图形处理单元(GPU)设备上执行的大规模平行晶格Boltzmann流体求解器与扩展有限元(XFE)实体求解器耦合。浸入式边界耦合方案提供双向相互作用,其中拉格朗日实心网格在固定的欧拉流体网格顶部移动。介绍了建模方法的理论基础和数值实现,以及一个简单的演示问题,该问题涉及在受激振引起的柔性梁中亚临界裂纹的扩展。

著录项

  • 作者

    Keller, Wesley John.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Mechanical engineering.;Industrial engineering.;Operations research.
  • 学位 M.S.
  • 年度 2016
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号