首页> 外文学位 >Magnetic Till Fabric: Applications of anisotropy of magnetic susceptibility (AMS) to subglacial deformation of till and ice. 1. Till kinematics and the origins of drumlins, New York State. 2. Till kinematics of the Baltic Ice Stream, Sweden. 3. Characterization of deformation within the Basal Stratified Ice of the Matanuska, Glacier, Alaska.
【24h】

Magnetic Till Fabric: Applications of anisotropy of magnetic susceptibility (AMS) to subglacial deformation of till and ice. 1. Till kinematics and the origins of drumlins, New York State. 2. Till kinematics of the Baltic Ice Stream, Sweden. 3. Characterization of deformation within the Basal Stratified Ice of the Matanuska, Glacier, Alaska.

机译:磁耕织物:磁化率各向异性(AMS)在耕作和冰下冰川下变形中的应用。 1.直到运动学和纽约州鼓林的起源。 2.瑞典波罗的海冰流的运动学。 3.在阿拉斯加冰川Matanuska的基底分层冰中的变形特征。

获取原文
获取原文并翻译 | 示例

摘要

Subglacial processes are significant contributors to the dynamics and sediment transport of glaciers and ice sheets, drive much of the observed variability in modern systems, and are responsible for much of the landscape in glaciated terrains. Subglacial deformation (i.e., deformation of the glacier substrate) is now recognized as a fundamental process of motion and sediment transport for warm-based glaciers; however, the spatial and temporal variability of this deformation is poorly understood, owing in part to the inaccessibility of the modern subglacial environment. The Pleistocene sedimentary record provides a complementary view, and many processes are recorded within the sediments. Herein, the variability of subglacial deformation is assessed in three distinct glacial settings using anisotropy of magnetic susceptibility (AMS) fabric analysis. AMS is a robust, quantitative, volume-averaged, and objective measure of the orientations of the axes of magnetic susceptibility, which is predominantly controlled by grain shape such that the orientation of the maximum susceptibility axis parallels the long axis of the grain. Thus, AMS provides a useful proxy for the orientation of magnetic grains within sediments, from which direction of ice flow and the magnitude of deformation can be inferred.;First, I assess the spatial variability of ice flow and till transport around streamlined bedforms (drumlins) and demonstrate relationships between internal drumlin fabric and the drumlin surface morphology, indicating these landforms cannot be erosional remnants, but are likely formed as till is transported to the drumlin locality and syndepositionally streamlined. Next, I evaluate stratigraphic (i.e., temporal) variation as recorded in a late-Weichselian Baltic Ice Stream (BIS) till in southern Sweden. Our analysis records systematic and dramatic changes in ice flow direction and bed deformation, demonstrating the dynamic nature of the BIS and allowing for the discrimination of intra-till kinematic zones. Finally, I address the distribution of deformation within the debris-rich basal stratified ice of the Matanuska Glacier, a modern temperate glacier in southern Alaska and a type-locality of stratified basal ice. Basal ice that is debris-rich relative to englacial ice and interacts with the glacier bed is common to many glaciers and ice sheets, but its genesis and contributions to glacier motion are poorly understood. This analysis reveals basal stratified ice has experienced significant shear, and that shear appears concentrated in debris-rich layers in the form of simple shear along sub-horizontal shear planes. Debris-poor layers possess 'compaction' fabrics indicative of pure shear driven by the force of the overlying englacial ice. Thus, the debris-rich basal ice is characterized by rheological inhomogeneities resulting from the competing factors of debris-content and ice crystal size, among others. These results indicate that deformation is pervasive within the subglacial environment, extending from the unfrozen substrate into the debris-rich basal ice, but that this deformation is characterized by high spatial and temporal variability in both magnitude and direction.
机译:冰期下的过程是冰川和冰原动力学和泥沙输送的重要因素,驱动了现代系统中观察到的许多变化,并且是冰川地形中大部分景观的原因。冰川下的变形(即冰川基底的变形)现在被认为是温暖型冰川运动和泥沙输送的基本过程。但是,这种变形的时空变异性了解得很少,部分原因是由于现代冰河环境难以接近。更新世的沉积记录提供了互补的观点,并且沉积物中记录了许多过程。在本文中,使用磁化率(AMS)织物各向异性分析了在三种不同的冰川环境中冰下变形的变化性。 AMS是磁化率轴方向的鲁棒,定量,体积平均和客观测量方法,磁化率轴主要由晶粒形状控制,以使最大磁化率轴的方向与晶粒的长轴平行。因此,AMS为沉积物中磁性颗粒的取向提供了有用的代理,可以从中推断出冰流的方向和变形的大小。;首先,我评估了冰流的空间变异性,直到流线型床身周围(鼓膜),并证明了鼓林内部织物与鼓林表面形态之间的关系,表明这些地貌不能是侵蚀性的残留物,但很可能在耕种运至鼓林局部并同构流线化时形成。接下来,我评估了在魏氏后期波罗的海冰河(BIS)直至瑞典南部之前记录的地层(即时间)变化。我们的分析记录了冰流向和床层变形的系统性和戏剧性变化,证明了BIS的动态特性并允许区分耕作运动区。最后,我讨论了Matanuska冰川,阿拉斯加南部的现代温带冰川和层状基础冰的类型局部性等富含碎屑的基础层状冰中的变形分布。相对于冰川冰而言,碎屑丰富且与冰川床相互作用的基底冰在许多冰川和冰原中很常见,但人们对其起源和对冰川运动的贡献知之甚少。该分析表明,基底层状冰经历了明显的剪切作用,并且剪切作用似乎集中在富含碎屑的层中,其形式为沿水平剪切面的简单剪切作用。碎屑少的层具有“密实”的织物,表明上覆的冰川冰的力驱动了纯剪切力。因此,富含碎屑的基础冰的特征在于,由碎屑含量和冰晶尺寸等竞争因素引起的流变不均匀性。这些结果表明,变形在冰下环境中无处不在,从未冻结的基底延伸到富含碎屑的基底冰中,但是这种变形的特征是在大小和方向上都具有很高的时空变异性。

著录项

  • 作者

    Hopkins, Nathan Russell.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Geology.;Geomorphology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号