首页> 外文学位 >Construction of synthetic signaling circuits by modular recombination.
【24h】

Construction of synthetic signaling circuits by modular recombination.

机译:通过模块化重组构建合成信号电路。

获取原文
获取原文并翻译 | 示例

摘要

Living cells integrate information from their external environments and demonstrate a wide range of sophisticated behaviors. Most of the rapid responses exhibited by cells are mediated by circuits composed of interconnected signal transduction proteins. What mechanisms allow these proteins and circuits to respond precisely in space and time? Moreover, how do signaling networks evolve, producing new relationships between signals and responses? We chose to address these questions using a synthetic biology approach by engineering signaling proteins with novel input-output relationships.;Many signaling proteins are composed of both catalytic domains and interaction domains, which are physically and functionally modular: the domains can be separated and function in different contexts. This modular structure has led to the hypothesis that new input-output relationships could be generated by recombining catalytic domains with alternative interaction domains. We first tested this hypothesis by engineering variants of the actin regulatory protein N-WASP (neuronal Wiskott-Aldrich syndrome proteins). These variants demonstrated a diverse array of gating behaviors in response to non-physiological inputs.;We then tested this approach in a cellular context by engineering synthetic Dbl family guanine nucleotide exchange factors (GEFs), which activate Rho family GTPases, the master regulators of the actin cytoskeleton. Microinjection of these GEFs linked specific morphological responses to normally unrelated signaling pathways. In addition, two synthetic GEFs could be linked in series to form a linear cascade, which demonstrated amplification and increased ultrasensitivity when compared to the direct single-GEF circuits.;These results demonstrate the evolutionary plasticity of modular signaling proteins, and suggest that it may be possible to manipulate cellular responses by engineering synthetic signaling networks. This ability will be critical for engineering cells with diverse therapeutic and biotechnological applications.
机译:活细胞整合了来自其外部环境的信息,并展示了各种各样的复杂行为。细胞表现出的大多数快速反应是由相互连接的信号转导蛋白组成的电路介导的。哪些机制可使这些蛋白质和电路在时空上精确响应?此外,信令网络如何发展,从而在信号和响应之间产生新的关系?我们选择使用合成生物学方法通过工程化具有新型输入输出关系的信号传导蛋白来解决这些问题。;许多信号传导蛋白都由催化域和相互作用域组成,它们在物理和功能上都是模块化的:这些域可以分离并起作用在不同的情况下。这种模块化结构导致了这样一个假设,即可以通过将催化结构域与其他相互作用结构域重新组合来生成新的输入-输出关系。我们首先通过肌动蛋白调节蛋白N-WASP(神经Wiskott-Aldrich综合征蛋白)的工程变体测试了这一假设。这些变体表现出对非生理学输入的响应的多种门控行为。;然后我们通过工程化合成的Dbl家族鸟嘌呤核苷酸交换因子(GEF)在细胞环境中对该方法进行了测试,该因子激活Rho家族的GTPases,该家族的主要调控因子肌动蛋白细胞骨架。这些GEF的显微注射将特定的形态学反应链接到通常不相关的信号通路。此外,两个合成的GEF可以串联连接形成线性级联,与直接的单个GEF电路相比显示出放大作用和增加的超敏性;这些结果证明了模块化信号蛋白的进化可塑性,并暗示它可能通过工程合成信号网络可以操纵细胞反应。这种能力对于工程细胞具有多种治疗和生物技术应用至关重要。

著录项

  • 作者

    Yeh, Brian Jen-Chang.;

  • 作者单位

    University of California, San Francisco.;

  • 授予单位 University of California, San Francisco.;
  • 学科 Chemistry Biochemistry.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号