首页> 外文学位 >A neural networks method to predict activity coefficients for binary systems based on molecular functional group contribution.
【24h】

A neural networks method to predict activity coefficients for binary systems based on molecular functional group contribution.

机译:基于分子官能团贡献的神经网络预测二元系统活性系数的方法。

获取原文
获取原文并翻译 | 示例

摘要

Artificial neural network (ANN) techniques and functional group contributions were used to develop an algorithm to predict chemical activity coefficients. The ANN algorithm was trained using experimental data for more than 900 binary systems obtained from DECHEMA, a phase-equilibrium database. All experimental data binary systems used in this study are isothermal. The prediction scheme is based on the fact that the atoms in a chemical compound can be grouped in a functional group with its own physical and chemical properties. Thus, almost any chemical compound can be built by combining the right number of functional groups. The functional group interactions among the components in a mixture are estimated and the combination of functional group interactions provides the intermolecular relationship among the components of a mixture and consequently the activity coefficients can be predicted. The intramolecular interactions were not considered in this study. The four-suffix Margules equation was used as the base thermodynamic model to calculate the activity coefficients. The Margules equation is good for modeling enthalpic contributions to the activity coefficient but is not good for modeling entropic contributions to the activity coefficient. The design of functional groups based on quantum mechanics was adopted to develop a method for predicting activity coefficients. ANN techniques are especially useful for modeling a highly nonlinear interaction among the functional groups and the corresponding activity coefficient. One of the major contributions of this research is to propose a method to identify the initial point and the structure of an ANN. The minimum mean squared prediction error criterion was implemented to determine both a suitable initial point and the structure of the ANN. A random search method was used to determine the optimal initial point and the Levenberg-Marquardt algorithm was used to train the ANN to generate a sample of prediction values and the trim mean based on 20% data elimination was selected as the best representation of the ensemble prediction of the Margules equation parameters. The algorithm was validated with nineteen vapor-liquid equilibrium systems and results show that the ANN provides a relative improvement over the UNIFAC method. The scope of this study is limited to some chemical compound families (i.e. alcohols, phenols, aldehydes, ketones and ethers), it is required to include more experimental data to cover additional chemical compound families such as carboxylic acids, anhydrides, esters, aliphatic hydrocarbons and halogens.
机译:人工神经网络(ANN)技术和官能团的贡献被用于开发预测化学活性系数的算法。使用从DECHEMA(相位平衡数据库)获得的900多个二元系统的实验数据对ANN算法进行了训练。本研究中使用的所有实验数据二进制系统都是等温的。该预测方案基于以下事实:化合物中的原子可以归为具有自身物理和化学特性的官能团。因此,通过组合正确数量的官能团,几乎可以生成任何化合物。估计混合物中各组分之间的官能团相互作用,并且官能团相互作用的组合提供了混合物各组分之间的分子间关系,因此可以预测活性系数。在这项研究中没有考虑分子内的相互作用。使用四后缀的Margules方程作为基础热力学模型来计算活度系数。 Margules方程有助于建模焓对活度系数的贡献,但不适用于建模熵对活度系数的贡献。通过基于量子力学的官能团设计,开发了一种预测活度系数的方法。人工神经网络技术对于建模功能组之间的高度非线性相互作用以及相应的活度系数特别有用。这项研究的主要贡献之一是提出一种识别ANN起始点和结构的方法。实施最小均方预测误差准则,以确定合适的初始点和人工神经网络的结构。使用随机搜索方法确定最佳起始点,并使用Levenberg-Marquardt算法训练ANN以生成预测值样本,并选择基于20%数据消除的修剪均值作为整体的最佳表示形式Margules方程参数的预测。该算法在十九个气液平衡系统上得到了验证,结果表明,人工神经网络比UNIFAC方法具有相对改进。本研究的范围仅限于某些化合物家族(即醇,酚,醛,酮和醚),需要包括更多实验数据来涵盖其他化合物家族,例如羧酸,酸酐,酯,脂族烃和卤素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号