首页> 外文学位 >Pore-water and proton transport in polymer electrolyte membrane fuel cell: Molecular dynamics and mono- and bimodal wetting treatments of mesopore hydrated Nafion.
【24h】

Pore-water and proton transport in polymer electrolyte membrane fuel cell: Molecular dynamics and mono- and bimodal wetting treatments of mesopore hydrated Nafion.

机译:聚合物电解质膜燃料电池中的孔隙水和质子传输:介孔水合Nafion的分子动力学以及单峰和双峰润湿处理。

获取原文
获取原文并翻译 | 示例

摘要

Water states and water/proton transport in nanopores of hydrated Nafion, a chosen electrolyte in polymer electrolyte membrane fuel cell, are explained using molecular dynamics (MD) aided bimodal pore-size/water-wetting model. The bimodal model is developed based on the effective Debye screening length for pore water confined by heterogeneously ionized surface, and using small-angle X-ray scattering (SAXS) measurements and existing pore-size distribution. The smaller pores (1 nm) critically confine water and promote capillary condensation (hydrophilic-like), while hindering transport. The larger pores (4 nm) delay the condensation (hydrophobic-like), while allowing bulk-like transport. In a pore network, the small pores selectively wet, while the large pores provide dominant adsorption and transport channels, a novel attribute of the bimodal model. Also, in contrast to the existing Nafion backbone-hydration model, a hydration-dependent, temperature-dependent sulfonic acid surface density is proposed.;The bimodal model succeeds in predicting the pore-water states and the transition in adsorption with capillary condensation in the large pores and negligible contribution from the small pores. These are in agreement with experiments. This transition also results in the proton conductivity jump by allowing dominant proton hopping through the larger pores in the network. The bimodal wetting describes the capillary water flow, where the small hydrophilic-like pores provide dominant flow channels, whereas water in the large pores remains immobile due to adsorption only. This water flow network results in lower liquid saturation distribution, in general agreement with the limited experimental results. At elevated temperatures, it is suggested that the sulfonic acid surface site density reduces due to pore surface stretching (relaxing backbone), resulting in hydrophobicity, most pronounced in the large pores. This delays the capillary condensation and decreases adsorption, and masks the transition in proton conductivity. The pore-water state/content for optimal cell operation is also discussed.
机译:使用分子动力学(MD)辅助的双峰孔径/水润湿模型解释了水合Nafion(聚合物电解质膜燃料电池中选择的电解质)的纳米孔中的水态和水/质子传输。该双峰模型是基于对异质电离表面所局限的孔隙水的有效德拜筛选长度,并使用小角度X射线散射(SAXS)测量和现有的孔径分布而开发的。较小的孔(1 nm)严格限制了水的流动,​​并促进了毛细管的凝结(类似亲水的),同时阻碍了运输。较大的孔(4 nm)可延迟冷凝(疏水性),同时允许散装状运输。在孔网络中,小孔选择性地润湿,而大孔提供主要的吸附和传输通道,这是双峰模型的新属性。此外,与现有的Nafion主链水合模型相反,提出了水合依赖性,温度依赖性的磺酸表面密度。;双峰模型成功地预测了孔隙水状态以及在毛细管中的毛细管冷凝作用下吸附的转变。大毛孔,小毛孔的贡献可忽略不计。这些与实验一致。通过允许主要的质子跳跃通过网络中的较大孔,该过渡还导致质子电导率跳跃。双峰润湿描述了毛细水流,其中小的亲水类孔提供了主要的流动通道,而大孔中的水仅由于吸附而保持不动。该水流网络导致较低的液体饱和度分布,通常与有限的实验结果一致。在升高的温度下,建议磺酸表面位密度由于孔表面拉伸(松弛骨架)而降低,导致疏水性,在大孔中最明显。这延迟了毛细管凝结并减少了吸附,并掩盖了质子传导性的转变。还讨论了用于最佳电池运行的孔隙水状态/含量。

著录项

  • 作者

    Hwang, Gi Suk.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Chemistry Polymer.;Engineering Mechanical.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号