首页> 外文学位 >Synthesis and characterization of monolayer -protected gold nanoparticles and their organoplatinum composites as vapor -sensitive microsensor interface materials.
【24h】

Synthesis and characterization of monolayer -protected gold nanoparticles and their organoplatinum composites as vapor -sensitive microsensor interface materials.

机译:单层保护的金纳米颗粒及其有机铂复合材料作为蒸气敏感型微传感器界面材料的合成与表征。

获取原文
获取原文并翻译 | 示例

摘要

Organothiolate-monolayer-protected gold nanoparticles (MPNs) offer numerous advantages as vapor-sensitive interface materials in microfabricated chemiresistor (CR) arrays. Small quantities of gas-phase species partitioning into thin MPN films cause large changes in resistance. In these studies, the synthesis, characterization, and testing of MPNs, alone and as composites with organoplatinum charge-transfer complexes, are explored. A new single-phase MPN synthesis is described, which avoids persistent ionic contamination from the phase-transfer catalyst (PTC) necessary in the conventional dualphase synthesis. Residual PTC leads to a frequency-dependent current through the MPN film, over two hour stabilization times, and anomalous vapor responses. The new method retains the high yield, particle-size control, and thiolate-monolayer functional-group diversity associated with the conventional MPN synthesis, while producing materials of higher purity in less than three minutes. MPNs with several different thiolate-ligand functionalities (e.g., aromatic and ester) were prepared by this single-phase method and fully characterized. Composite films of n-octanethiolate MPNs with charge-transfer complexes of the general formula PtCl2(olefin)(pyridine) were then tested and found to selectively interact with gas-phase olefins. A spontaneously reversible Pt-olefin interaction occurs that is accompanied by a decrease in film resistance. Structurally analogous non-olefins invariably cause an increase in film resistance associated with MPN swelling. The mechanism for the conduction enhancement was elucidated from the 33 nm red-shift in the UV-vis absorbance spectrum of PtCl2(styrene)(pyridine) when titrated with styrene. Detection limit reductions, for examined olefins, by as much as 104-fold are achieved by use of these composite CR interface films. Tethering Pt-complexes to unsaturated MPN ligands was successful but did not provide the selectivity and sensitivity observed with the composite films. In a follow-on study, composite films of n-octanethiolate MPNs with PtCl2(pyridine)2 were shown to reversibly and selectively interact with pyridine vapor and its derivatives, including the environmental tobacco smoke markers 4-vinylpyridine and nicotine. UV-vis absorbance spectrum red-shifts confirm a charge-transfer interaction similar to that observed with the Pt-olefin MPN composites. Although the degree of selectivity is less than that observed with the olefins, the results support the use of organometallic additives in MPN films as a general means of enhancing sensitivity and selectivity.
机译:有机硫醇盐单层保护的金纳米颗粒(MPN)具有许多优势,可作为微型化化学电阻器(CR)阵列中的蒸汽敏感界面材料。少量气相物质分配到MPN薄膜中会引起电阻的较大变化。在这些研究中,探索了MPN的单独合成,表征和测试,以及与有机铂电荷转移复合物的复合物。描述了一种新的单相MPN合成,该合成避免了常规双相合成中必需的相转移催化剂(PTC)造成的持久性离子污染。残留的PTC会导致流经MPN膜的频率相关电流,超过两小时的稳定时间以及异常的蒸汽响应。新方法保留了与常规MPN合成相关的高收率,粒度控制和硫醇盐单层官能团多样性,同时在不到三分钟的时间内生产出更高纯度的材料。通过这种单相方法制备了具有几种不同硫醇盐-配体官能团(例如芳族化合物和酯)的MPN,并对其进行了全面表征。然后测试了具有通式PtCl2(烯烃)(吡啶)的电荷转移配合物的正辛烷硫醇MPN的复合膜,发现它们与气相烯烃有选择性地相互作用。发生自发可逆的Pt-烯烃相互作用,并伴随着薄膜电阻的降低。结构上类似的非烯烃总是导致与MPN溶胀相关的薄膜电阻增加。当用苯乙烯滴定时,PtCl2(苯乙烯)(吡啶)的UV-vis吸收光谱的33 nm红移阐明了传导增强的机理。通过使用这些复合CR界面薄膜,可将检测到的烯烃的检出限降低多达104倍。将Pt复合物束缚到不饱和MPN配位体是成功的,但没有提供复合膜所观察到的选择性和灵敏度。在后续研究中,正辛硫醇MPN与PtCl2(吡啶)2的复合膜显示可逆和选择性地与吡啶蒸气及其衍生物相互作用,包括环境烟草烟雾标记物4-乙烯基吡啶和尼古丁。紫外可见吸收光谱的红移证实了电荷转移相互作用类似于在Pt-烯烃MPN复合材料中观察到的相互作用。尽管选择性程度小于用烯烃观察到的程度,但结果支持在MPN膜中使用有机金属添加剂作为增强灵敏度和选择性的一般手段。

著录项

  • 作者

    Rowe, Michael Paul.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Chemistry Analytical.;Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号