首页> 外文学位 >Electron transfer mediating properties of self-assembled monolayers: A nanografting and conductive probe AFM study.
【24h】

Electron transfer mediating properties of self-assembled monolayers: A nanografting and conductive probe AFM study.

机译:自组装单分子层的电子转移介导特性:纳米接枝和导电探针原子力显微镜研究。

获取原文
获取原文并翻译 | 示例

摘要

Molecular electronics have been attracting tremendous interest in recent years. One of the basic questions remaining unanswered, however, in this field is how to determine the "conductivity" of molecules. Conventional methods for measuring electron transport properties through metal-molecule-metal junctions lack the precise descriptions of the contact properties in the junction. Consequently, the "conductivities" of molecules reported in the literature are not consistent. In this dissertation we report a new experimental method for measuring relatively small differences in electron tunneling through two distinct monolayers. We place them side by side using scanning probe nanolithography and compare the tunneling currents by conductive probe atomic force microscopy under identical force, voltage, and tip contamination conditions. We demonstrate the validity of our approach by applying it to two isomeric molecules with similar length and functional groups, with only the position of two functional groups, one aromatic and the other aliphatic, being inverted with respect to each other. The relative values of the two tunneling currents, calculated using density functional theory in the Tersoff-Hamann approach, compare very well with the experimental data, providing us with an example of theory vs experiment agreement that is rather uncommon in this field.; In this dissertation we also use atomic force microscopy (AFM) to nanostructure and image 1, 10-decanedithiol (DDT, or C10S2) and biphenyl 4,4'-dithiol (BPDT) layers on Au (111) surfaces comparing them to those prepared by self-assembly. First, layers of dithiols are self-assembled from solution onto gold surfaces and are imaged with an AFM as a function of time to examine their growth kinetics. Secondly, 100 nm x 100 nm monolayer patches made of dithiol molecules are nanografted into a self-assembled monolayer inert matrix made of 1-decanethiol. Although nanografting of thiols routinely generates very compact layers with good height uniformity, nanostructuring of dithiols using this method always yields multilayers that form through intermolecular S-S bonds. We demonstrate two possible ways of tailoring, layer by layer, the structure of dithiols. First we form multilayers by nanografting, using then the AFM tip to gradually shave away the top layers. In the second we add antioxidant to the solution while doing nanografting to suppress the oxidative coupling of the --SH groups. We found that nanografting in the presence of excess amount of antioxidant can produce monolayers of dithiols. The so produced DDT (C10S2) monolayer patches are lower than what can be calculated by the 30°-tilt model, while the height of nanografted patches of BPDT closely corresponds to a vertical (standing-up) configuration. Finally, we use conductive-probe AFM to investigate the electron tunneling properties through BPDT multilayers. The molecules in these layers turn out to behave as conductive molecular wires, making these nanostructures good candidates for constructing molecular electronic devices.
机译:近年来,分子电子学引起了极大的兴趣。然而,在这一领域中,仍未解决的基本问题之一是如何确定分子的“电导率”。用于测量通过金属-分子-金属结的电子传输性质的常规方法缺乏对结中接触性质的精确描述。因此,文献中报道的分子的“电导率”不一致。在本文中,我们报告了一种新的实验方法,用于测量通过两个不同的单层电子隧穿的相对较小的差异。我们使用扫描探针纳米光刻将它们并排放置,并通过导电探针原子力显微镜在相同的力,电压和尖端污染条件下比较隧道电流。我们通过将其应用于具有相似长度和官能团的两个异构分子,而仅两个官能团(一个芳香族和另一个脂肪族,彼此相对)的位置证明了该方法的有效性。在Tersoff-Hamann方法中使用密度泛函理论计算的两个隧穿电流的相对值与实验数据进行了很好的比较,从而为我们提供了一个理论与实验一致的例子,这在该领域并不常见。在本文中,我们还使用原子力显微镜(AFM)对纳米结构进行成像,并对Au(111)表面上的1,10-癸二硫醇(DDT或C10S2)和联苯4,4'-二硫醇(BPDT)层进行了图像处理并将它们与制备的相比较。通过自组装。首先,将二硫醇层从溶液中自动组装到金表面,并用AFM作为时间的函数进行成像,以检查其生长动力学。其次,将由二硫醇分子制成的100 nm x 100 nm单层贴剂纳米移植到由1-癸烷硫醇制成的自组装单层惰性基质中。尽管硫醇的纳米接枝通常会产生非常紧凑的层,具有良好的高度均匀性,但使用此方法对二硫醇进行纳米结构化始终会产生通过分子间S-S键形成的多层结构。我们展示了二硫醇结构逐层裁剪的两种可能方法。首先,我们通过纳米接枝形成多层,然后使用AFM尖端逐渐剃除顶层。在第二种方法中,我们在进行纳米接枝的同时向溶液中添加抗氧化剂,以抑制--SH基团的氧化偶联。我们发现在过量抗氧化剂的存在下进行纳米接枝可以产生二硫醇单层。如此生产的DDT(C10S2)单层贴片低于30°-倾斜模型可以计算出的值,而BPDT的纳米接枝贴片的高度紧密对应于垂直(直立)构型。最后,我们使用导电探针原子力显微镜研究通过BPDT多层膜的电子隧穿特性。这些层中的分子最终表现出导电分子线的作用,使这些纳米结构成为构建分子电子器件的良好候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号