首页> 外文学位 >Numerical simulation and emission diagnostics of the gas-phase growth environment during carbon nanotube synthesis by plasma-enhanced chemical vapor deposition.
【24h】

Numerical simulation and emission diagnostics of the gas-phase growth environment during carbon nanotube synthesis by plasma-enhanced chemical vapor deposition.

机译:等离子体增强化学气相沉积法在碳纳米管合成过程中气相生长环境的数值模拟和排放诊断。

获取原文
获取原文并翻译 | 示例

摘要

The unique electrical, thermal, and mechanical properties of carbon nanotubes (CNTs) have elicited many concepts for important applications in areas such as nanoelectronics, communications, thermal transport, and composite materials. Yet the efficacy of their use in these applications often depends on precise control of the synthesis process. However CNT growth mechanism is not fundamentally understood due to their complex growth environment. Knowledge of chemical precursors plays a vital role in the understanding of growth mechanisms, but the precise composition of precursor concentrations for CNT growth has not been well established.; The objective of the present study is to simulate and diagnose the gas-phase environment for CNT synthesis in a plasma-enhanced chemical vapor deposition (PECVD) reactor. Simulations seek to compare the role of different gas-phase reactions to identify the indicator species for CNT formation. The temperature of the gas-phase CNT growth environment was diagnosed via in situ optical emission spectroscopy. Gas temperatures in the plasma have been measured to develop, and optimize a new heat loss model, and to study gas-phase chemistry for CNT growth using detailed chemical kinetics.; Simulations show that C2H2, CH3, and H are the major species formed in the plasma at CNT growth conditions. C 2H2 is the main gas-phase precursor for CNT growth, and H atom is responsible to etch the undesired carbon on the substrate. The gas-phase chemistry in the plasma is dominated by the neutral species. The present work confirms that key parameter [H]/[C2H2] ratio differentiates between the diamond and the non-diamond growth regime. Conduction is the only relevant mode of the heat transfer in the reactor. The simulated gas temperatures based on a new heat transfer model follow the trends, and are nearly within error bars of the measured gas temperatures. The present gas-phase simulations contribute to an explanation of the experimental observations of CNT growth at different input plasma powers and different feed gas compositions.
机译:碳纳米管(CNT)的独特电学,热学和机械性能为在纳米电子,通信,热传输和复合材料等领域的重要应用引出了许多概念。然而,它们在这些应用中的使用效果通常取决于对合成过程的精确控制。然而,由于其复杂的生长环境,从根本上不了解CNT的生长机理。化学前体的知识在理解生长机理中起着至关重要的作用,但是尚未很好地确定用于CNT生长的前体浓度的精确组成。本研究的目的是模拟和诊断在等离子体增强化学气相沉积(PECVD)反应器中用于CNT合成的气相环境。模拟试图比较不同气相反应在确定CNT形成指示剂种类中的作用。气相CNT生长环境的温度通过原位发射光谱法诊断。已测量了等离子体中的气体温度,以开发和优化新的热损失模型,并使用详细的化学动力学研究用于CNT生长的气相化学。模拟表明,在CNT生长条件下,等离子体中形成的主要物质为C2H2,CH3和H。 C 2H2是用于CNT生长的主要气相前驱物,H原子负责在基板上蚀刻不希望的碳。等离子体中的气相化学主要由中性物质组成。目前的工作证实了关键参数[H] / [C2H2]的比率可以区分钻石和非钻石的生长方式。传导是反应器中传热的唯一相关方式。基于新的传热模型的模拟气体温度遵循趋势,并且几乎在所测气体温度的误差范围内。本气相模拟有助于解释在不同输入等离子体功率和不同进料气成分下CNT生长的实验观察结果。

著录项

  • 作者

    Garg, Rajesh Kumar.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号