首页> 外文学位 >Theoretical, experimental, device fabrication, and degradation studies of materials for optoelectronic devices.
【24h】

Theoretical, experimental, device fabrication, and degradation studies of materials for optoelectronic devices.

机译:光电器件材料的理论,实验,器件制造和降解研究。

获取原文
获取原文并翻译 | 示例

摘要

The work presented in this thesis has two distinct objectives. The first objective is to design, synthesize, and study new materials for OLEDs and OPV cells and in the process make more efficient devices. The second objective is to study the extrinsic degradation mechanism of OLED and find a way to stop or slow down the degradation, so in the future more air stable devices can be produced.; Development of high triplet energy materials is important for both OLEDs and OPV cells. In OLEDs these materials can be effectively used either as hosts or as hole blocking materials and in OPV cells the materials can be used as exciton blocking layers (Buffer layers). The second chapter of this thesis describes the design, synthesis, and characterization studies of new phthalimide based high triplet energy materials for OLEDs and OPV cells. The chapter gives a detailed narrative of the electrochemical, photophysical, and density functional theory analysis (Ground and excited states) of all the materials.; The third chapter deals with thermochemistry, thin-film photophysics, and OLED fabrication studies of the phthalimide materials. The chapter delves into the OLED fabrication studies and investigates the behaviors of the devices fabricated with the phthalimides as hosts and as hole blocking layers (HBL) with red and green dopants. Very efficient green and red devices were obtained with the phthalimide HBL compared to the conventional BCP hole blocking layer.; Theoretical studies of platinum based broadband emitter, (dmappy)Pt(acac) are described in chapter four. In room temperature fluid solution, the (dmappy)Pt(acac) has been shown to emit in two different wavelengths, which shifts from blue to red depending on solvent polarity. Rotation of the dimethyl amino moiety on the phenyl ring causes the molecule to emit in different wavelengths. In the planar geometry, increased conjugation between the p orbital of the nitrogen atom and the pi orbitals of the phenyl ring causes the triplet energy of the system to decrease. When the dimethyl amino group rotates perpendicular to the plane of the molecule, the geometry of the dimethyl amino moiety becomes trigonal-by-pyramidal giving rise to two structural isomers: One with the nitrogen lone pairs facing up and the other with the lone pairs facing down. As a consequence, the conjugation between the p-pi orbitals decreases and the emission shifts to higher energy. In chapter four we investigate the spectroscopic behavior of this molecule by comparing the photophysical data with DFT and TDDFT calculations.; Theoretical investigation of (5NO2ppy)Pt(acac) is covered in chapter five. This molecules is important for both OLEDs and OPV cells. At 77K glass in 2me-THF and at room temperature in hexanes and polystyrene matrix emission from this molecule is observed around 550nm. In acetonitrile, toluene, and 2me-THF at 298 K no emission is observed. We believe that the emission of (5NO2ppy)Pt(acac) is controlled by the rotating NO 2 group on the pyridine ring. Rotation of the NO2 group to the plane or perpendicular to the plane of the molecule may alter the emission properties of the molecule. Chapter five uses theoretical methods (DFT and TDDFT) to investigate the spectroscopic properties of (5NO2ppy)Pt(acac).; In open air degradation of OLEDs proceeds through the formation and growth of nonemissive regions called dark spots. Since the dark spots form on the cathodes and grow by reacting with the water and oxygen molecules that tunnels through the cathode to the ETL, an effective way of stopping the formation and growth of dark spots would be by overcoating the cathode with hydrophobic materials and replacing the ETL with materials that can act as desiccants. Chapter six investigates the role of electron transporting layers (ETLs) and various overcoating materials on the degradation OLEDs.
机译:本文提出的工作有两个不同的目标。第一个目标是设计,合成和研究OLED和OPV电池的新材料,并在此过程中制造更高效的设备。第二个目的是研究OLED的外在降解机理,并找到一种阻止或减缓降解的方法,以便将来可以生产出更多的空气稳定器件。高三重态能量材料的开发对于OLED和OPV电池都很重要。在OLED中,这些材料可以有效地用作基质或空穴阻挡材料,而在OPV电池中,这些材料可以用作激子阻挡层(缓冲层)。本文的第二章描述了用于OLED和OPV电池的新型邻苯二甲酰亚胺基高三重态能量材料的设计,合成和表征研究。本章详细介绍了所有材料的电化学,光物理和密度泛函理论分析(基态和激发态)。第三章涉及邻苯二甲酰亚胺材料的热化学,薄膜光物理和OLED制造研究。本章深入研究了OLED的制造研究,并研究了将邻苯二甲酰亚胺用作主体和红色​​和绿色掺杂剂作为空穴阻挡层(HBL)制成的器件的性能。与常规的BCP空穴阻挡层相比,邻苯二甲酰亚胺HBL可获得非常高效的绿色和红色器件。第四章介绍了铂基宽带发射器(dmappy)Pt(acac)的理论研究。在室温流体溶液中,(dmappy)Pt(acac)已显示出以两种不同的波长发射,根据溶剂的极性,该波长从蓝色变为红色。苯环上二甲基氨基部分的旋转会导致分子以不同的波长发射。在平面几何形状中,氮原子的p轨道与苯环的pi轨道之间增加的共轭会导致系统的三重态能量降低。当二甲基氨基基团垂直于分子平面旋转时,二甲基氨基部分的几何形状变为三角金字塔形,从而产生两个结构异构体:一个异构体的氮孤对朝上,另一个孤立氮对下。结果,p-pi轨道之间的共轭减小,并且发射移向更高的能量。在第四章中,我们通过将光物理数据与DFT和TDDFT计算结果进行比较,研究了该分子的光谱行为。第五章介绍了(5NO2ppy)Pt(acac)的理论研究。该分子对于OLED和OPV电池都很重要。在2me-THF中的77K玻璃中,在室温下的己烷中,在550nm附近观察到该分子的聚苯乙烯基质发射。在298 K的乙腈,甲苯和2me-THF中,未观察到发射。我们认为(5NO2ppy)Pt(acac)的发射受吡啶环上旋转的NO 2基团控制。 NO 2基团向分子平面或垂直于分子平面的旋转可改变分子的发射性质。第五章使用理论方法(DFT和TDDFT)研究了(5NO2ppy)Pt(acac)的光谱性质。在露天中,OLED的降解通过称为黑点的非发光区域的形成和生长而进行。由于黑点在阴极上形成并通过与通过阴极隧穿至ETL的水和氧分子反应而生长,因此阻止黑点形成和生长的有效方法是在阴极上涂疏水性材料并替换具有可以用作干燥剂的材料的ETL。第六章研究了电子传输层(ETL)和各种外涂层材料在降解OLED上的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号