首页> 外文学位 >Micro/nano fabrication of polymeric materials by DMD-based micro-stereolithography and photothermal imprinting.
【24h】

Micro/nano fabrication of polymeric materials by DMD-based micro-stereolithography and photothermal imprinting.

机译:通过基于DMD的微立体光刻技术和光热压印技术对聚合物材料进行微/纳米加工。

获取原文
获取原文并翻译 | 示例

摘要

The revolutionary advancement in semiconductor device manufacturing promoted micro/nano fabrication technologies viable for research and applications in broader fields such as biology and optics. This dissertation is aimed at developing parallel fabrication technologies for polymeric micro/nano structures that can potentially be used in biomedical or optical devices. The objective of the dissertation is three told: (a) develop and characterize a digital micro-mirror device (DMD)-based micro-stereolithographic system and explore the fabrication of hydrogel tissue engineering scaffolds, (b) use the micro-stereolithographic system to fabricate microlens arrays, (c) develop a photothermal imprinting technique to pattern nanostructures on the surface of polymer composites.; In the first part of the dissertation, we demonstrated a simple and fast, layer-by-layer micro-stereolithographic system based on DMD dynamic photomask that allows fabrication of complex internal features along the precise spatial distribution of biological factors inside a single scaffold. Photo-crosslinkable poly(ethylene glycol) diacrylate and diamethacrylate were used as the scaffold material. In situ encapsulation of fluorescently-labeled micro-particles and cells was demonstrated. We investigated the photopolymerization process and its effects on the properties of the scaffolds. This technique could provide a powerful tool in studying progenitor cell behavior and differentiation under biomimetic, three-dimensional (3D) culture conditions.; In the second part, we developed a novel fabrication technique for microlens arrays using a modified DMD-based micro-stereolithographic system. The DMD can generate high resolution images with quasi-continuous intensity gradient, thanks to its high density mirror elements with a bandwidth of 10 KHz. The projected UV patterns were simply drawn in a computer software. Topographic patterns were created in photocurable resin by spatially controlling the curing depth. Spherical microlens arrays were fabricated and their optical performance was characterized. This technique is capable of fabricating optical elements with any surface topography.; In the third part, we discussed the photo-induced radical polymerization. A numerical model was established to correlate the geometry of the resulting gels and system parameters.; In the fourth part, we reported a laser-assisted photothermal imprinting method for directly patterning carbon nanofiber reinforced polyethylene nanocomposite. A single laser pulse was used to melt/soften a thin skin layer of polymer nanocomposite. Meanwhile, high resolution patterns were transferred from a quartz mold to the surface of the composite.
机译:半导体器件制造领域的革命性进步推动了微/纳米制造技术的发展,可用于生物学和光学等更广泛领域的研究和应用。本文旨在为聚合物微纳米结构开发并行制造技术,该技术可潜在地用于生物医学或光学设备。论文的目标是三个方面:(a)开发和表征基于数字微镜设备(DMD)的微立体光刻系统,并探索水凝胶组织工程支架的制造,(b)使用微立体光刻系统制造微透镜阵列,(c)开发一种光热压印技术,以在聚合物复合材料的表面上构图纳米结构。在论文的第一部分中,我们展示了一个简单,快速,基于DMD动态光掩模的逐层微立体光刻系统,该系统允许沿着单个支架内生物因子的精确空间分布制造复杂的内部特征。将可光交联的聚(乙二醇)二丙烯酸酯和二甲基丙烯酸酯用作支架材料。荧光标记的微粒和细胞的原位封装被证明。我们研究了光聚合过程及其对支架性能的影响。该技术可以为研究仿生,三维(3D)培养条件下祖细胞的行为和分化提供强大的工具。在第二部分中,我们使用改进的基于DMD的微立体光刻系统开发了一种用于微透镜阵列的新颖制造技术。 DMD的带宽为10 KHz的高密度镜面元件,可以生成具有准连续强度梯度的高分辨率图像。只需在计算机软件中绘制投影的紫外线图案即可。通过在空间上控制固化深度,在可光固化树脂中创建地形图。制作了球形微透镜阵列,并对其光学性能进行了表征。该技术能够制造具有任何表面形貌的光学元件。在第三部分中,我们讨论了光诱导的自由基聚合。建立了数值模型,以使所得凝胶的几何形状与系统参数相关。在第四部分中,我们报道了一种直接在碳纳米纤维增强的聚乙烯纳米复合材料上构图的激光辅助光热压印方法。使用单个激光脉冲来熔化/软化聚合物纳米复合材料的薄皮层。同时,高分辨率图案从石英模具转移到复合材料的表面。

著录项

  • 作者

    Lu, Yi.;

  • 作者单位

    The University of Texas at Austin.$bMechanical Engineering.;

  • 授予单位 The University of Texas at Austin.$bMechanical Engineering.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号