首页> 外文学位 >Electrospun polycaprolactone scaffolds under strain and their application in cartilage tissue engineering.
【24h】

Electrospun polycaprolactone scaffolds under strain and their application in cartilage tissue engineering.

机译:静电纺丝聚己内酯支架在应变下的应用及其在软骨组织工程中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Electrospinning is a promising fabrication method for three dimensional tissue engineering scaffolds due to its ability to produce a nano-/micro-sized non-woven fibrous structure which resembles the natural extracellular matrix. We investigated the mechanical behavior of two different electrospun microstructures. Polycaprolactone (PCL) fibers with or without "point-bonding" exhibited different deformation behaviors having significant biomedical consequences. While fibers with point-bonded structure failed due to the generation of voids by the fracture of fiber interconnections under strain, fibers without point-bonds produced a 'bamboo' structure with fiber joining visible at higher levels of strain. In addition, gelatin and PCL were electrospun and the residual solvent contents were systematically investigated. A simple and effective means of reducing residual solvent content was developed.; The interaction between these electrospun matrices and chondrocytic cells were compared to other topographies having the same chemistry. Electrospun polycaprolactone fibers supported better proliferation and extracellular matrix production than the corresponding semi-porous and dense surfaces and even, at some time points, glass surfaces. The intrinsic capability of electrospinning to produce high porosity appears to offset the relative hydrophobicity of polycaprolactone resulting in a more uniform cell seeding. Electrospun fibers induced a higher level of glycosaminoglycans (GAG) production by providing a 'dynamic scaffold' in which chondrocytes are able to maintain a morphology associated with the appropriate phenotype. Finally, based on this study, a method producing macro-pores within an electrospun scaffold was developed. With this method, not only can cellular infiltration into a thick electrospun scaffold be facilitated, but scaffolds having designed, anisotropic structures can be produced that better approximate the final tissue.
机译:由于静电纺丝能够产生类似于天然细胞外基质的纳米/微米大小的非织造纤维结构,因此静电纺丝是用于三维组织工程支架的有前途的制造方法。我们研究了两种不同的电纺微结构的力学行为。具有或不具有“点粘结”的聚己内酯(PCL)纤维表现出不同的变形行为,具有明显的生物医学后果。虽然具有点粘结结构的纤维由于在应力作用下由于纤维互连的断裂而产生空隙而失效,但是没有点粘结的纤维产生了一种“竹”结构,在较高的应变水平下可见到了纤维连接。此外,对明胶和PCL进行了静电纺丝,并对残留溶剂含量进行了系统的研究。开发了一种减少残留溶剂含量的简单有效的方法。将这些电纺丝基质与软骨细胞之间的相互作用与化学性质相同的其他地形进行了比较。与相应的半孔和致密表面,甚至在某些时间点,玻璃表面相比,电纺聚己内酯纤维支持更好的增殖和细胞外基质产生。电纺产生高孔隙率的内在能力似乎抵消了聚己内酯的相对疏水性,从而使细胞接种更加均匀。电纺纤维通过提供一种“动态支架”来诱导更高水平的糖胺聚糖(GAG)产生,其中软骨细胞能够维持与适当表型相关的形态。最后,基于该研究,开发了在电纺支架内产生大孔的方法。利用这种方法,不仅可以促进细胞向厚的电纺丝支架中的浸润,而且可以制造具有设计的各向异性结构的支架,其更好地近似于最终组织。

著录项

  • 作者

    Nam, Jin.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Biomedical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号