首页> 外文学位 >Interaction between forming and crashworthiness of advanced high strength steel s-rails.
【24h】

Interaction between forming and crashworthiness of advanced high strength steel s-rails.

机译:先进高强度钢S形导轨的成型与耐撞性之间的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents the results of experimental and numerical investigations carried out to assess the effects of tube bending and hydroforming on the crash performance of s-rail structures manufactured from three different advanced high strength steels, namely DDQ, HSLA350, and DP600. The main impetus for this project is to reduce vehicle weight through material substitution and, in order to do so, the effects of material strength on crashworthiness, as well as the interaction between forming processes and crash response must be well understood. To this end, in the current research, s-rails were fabricated through tube bending and hydroforming experiments conducted on DDQ, HSLA350, and DP600 steels with a nominal wall thickness of 1.8mm, as well as HSLA350 steel with a nominal wall thickness of 1.5mm. Impact experiments were subsequently performed on non-hydroformed and hydroformed s-rails to examine the effects of the forming processes and material substitution on the crushing loads and levels of absorbed energy. All forming and crash experiments were simulated using numerical finite element methods which provide additional insight into various aspects of the crash response of these structures. In particular, crash simulations were used to show the effects of work-hardening, material thickness changes, and residual stresses incurred during the forming operations.; The numerical tube bending simulations accurately predict the results of the tube bending and hydroforming processes for all materials, particularly for the DP600; the predictions for the DDQ material are the least accurate. Both simulations and experiments show that material thinning occurs on the tensile side of the bend, and material thickening on the compressive side of the bend; the level of thickness change is unaffected by material strength or initial material thickness. The low-pressure hydroforming process does not greatly affect the thickness and strain distributions of s-rails.; The crash simulations provide predictions that are in excellent accord with the measured results, with a maximum error of +/-10% in the peak loads and energies; simulations of DP600 s-rails are the most accurate, while simulations of DDQ s-rails are the least accurate. Through simulations and experiments, it is shown that material thickness has the greatest effect on the crash performance of s-rail structures, while material strength plays a secondary role. A 20% increase in the wall thickness of HSLA350 s-rails amounts to a 47% increase in energy absorption. Substituting HSLA350 and DP600 steels in place of DDQ steel leads to increases in energy absorption of 31% and 64%, respectively, for corresponding increases in strength of 30% and 76%. Neglecting material strain-rate effects in the numerical models lowers the predicted peak loads and energies by roughly 15%. By performing a numerical parametric study, it is determined that a weight reduction of 22% is possible by substituting thinner-gauge DP600 s-rails in place of DDQ s-rails while maintaining the energy absorption of the structures.
机译:本文介绍了实验和数值研究的结果,以评估管材弯曲和液压成形对由三种不同的高级高强度钢DDQ,HSLA350和DP600制成的S型钢结构的碰撞性能的影响。该项目的主要推动力是通过替代材料来减轻车辆的重量,为此,必须充分了解材料强度对耐撞性的影响以及成型过程与碰撞响应之间的相互作用。为此,在当前的研究中,通过对标称壁厚为1.8mm的DDQ,HSLA350和DP600钢以及标称壁厚为1.5的HSLA350钢进行管弯曲和液压成形实验来制造S型钢轨毫米随后在非液压成形和液压成形的S形导轨上进行了冲击试验,以检查成形过程和材料替代对破碎载荷和吸收能级的影响。使用数值有限元方法对所有成形和碰撞实验进行了模拟,这些方法提供了对这些结构碰撞响应各个方面的更多了解。尤其是,通过碰撞模拟来显示加工硬化,材料厚度变化以及在成型操作过程中产生的残余应力的影响。管弯曲的数值模拟可以准确预测所有材料,特别是DP600的管弯曲和液压成形工艺的结果; DDQ材料的预测最不准确。仿真和实验均表明,材料变薄发生在折弯的拉伸侧,材料变厚发生在折弯的压缩侧。厚度变化的水平不受材料强度或初始材料厚度的影响。低压液压成型工艺不会极大地影响S型钢轨的厚度和应变分布。碰撞模拟所提供的预测与测量结果非常吻合,峰值负载和能量的最大误差为+/- 10%。 DP600 s-rails的仿真最准确,而DDQ s-rails的仿真最不准确。通过仿真和实验表明,材料厚度对S型钢轨结构的碰撞性能影响最大,而材料强度起次要作用。 HSLA350 S形导轨的壁厚增加20%,则能量吸收增加47%。用HSLA350和DP600代替DDQ钢分别使能量吸收增加31%和64%,强度相应增加30%和76%。忽略数值模型中的材料应变率效应会使预测的峰值负荷和能量降低约15%。通过进行数值参数研究,可以确定通过将较薄规格的DP600 s导轨代替DDQ s导轨,同时保持结构的能量吸收,可以使重量减轻22%。

著录项

  • 作者

    Grantab, Rassin.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 M.A.Sc.
  • 年度 2006
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号